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Abstract:
A Generalized PathSeeker Regularized Regression (GPSRR), based on data mining approach, is
applied for statistical modeling and prediction of output power of copper bromide vapor lasers. The
aim is on the basis of available experimental data to construct appropriate predictive models of the
output power of the lasers depending on 10 operating laser characteristics in order to direct future
experiments and designing new laser devices with increased output power. In particular, the
influence on model performance and predictive ability of several data transformations, used to
improve the normality of the distribution of the dependent variable is investigated. As a main result,
numerous combined models, built by GPSRR with data mining techniques are obtained and their
adequacy is established by cross-validation. It is found that the best combined models demonstrate
up to 98-99% of fitting the experimental data. The combined models with the proposed preliminary
transformations improve the adequacy and predictive ability of GPSRR in the region of high values
of the output power by up to 10%. This was established both for learn and test random samples,
showing a perfect out-of-sample performance of this type of model approach. The models are
applied for predicting of laser output power for new laser devices of the same type by up to 15%.
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1. Introduction 

It is well known that the best developed directions for finding relationships within datasets 

encompasses a large number of regression methods. An overview of the current state 

and the capabilities of prediction techniques, including regression and data mining 

statistical techniques, can be found in (Nisbet et al. 2009; Hastie et al. 2001). In this study 

one of the latest regression methods, namely the Generalized PathSeeker regularized 

regression (GPSRR) is used for solving a problem from laser technology. GPSRR is a 

new generation statistical method, developed by Jerome Friedman (2012). The GPSRR 

method has been realized in the spring of 2013 as a part of the Salford Predictive 

Modeler (SPM) software package (SPM 2013). It was shown by examples that GPSRR 

used in combination of preprocessing TreeNet stochastic gradient boosting and 

associated data mining techniques overperforms all existing predictive methods (Friedman 

2012).     

In this paper the GPSRR is applied to study experimental data for a family of copper 

bromide (CuBr) vapor lasers (Sabotinov 2006). The dependent variable is the output 

laser power (laser generation), considered in relation to 10 laser operating 

characteristics. These data have been investigated in literature by different parametric 

and nonparametric statistical methods. In (Gocheva-Ilieva and Iliev, 2011) multiple linear 

regression, factor analysis with principal component regression, nonlinear regression and 

multivariate adaptive regression splines (MARS) have been applied for modeling output 

laser characteristics – laser output power and laser efficiency of CuBr laser. In recent 

papers (Iliev et al. 2012, 2013) high quality models have been constructed by means of 

MARS and CART methods (Friedman 1991; Breiman et al. 1984; Nisbet et al. 2009). In 

(Gocheva-Ilieva 2014) some GPSRR models have been presented. However, for these 

models the predictions, especially in the most important region of the higher laser output 

power are not satisfactory and differ from the experiment about 10 to 20%. 

The goals of this study are: (i) to find appropriate preliminary data transformation for 

improving the distribution of the initial data closer to the normal distribution; (ii) to 

construct significantly improved combined models (based on GPSRR and data mining 

techniques) of laser generation of CuBr vapor lasers with higher predictive ability in the 

region of the highest values of the output power; (iii) to apply the models for prediction of 

future experiment directed a development of new laser devices with increased output 

power. The results are obtained by means of the Salford Predictive Modeler and author’s 

programming codes in Wolfram Mathematica software. 

 

28 June 2016, 24th International Academic Conference, Barcelona ISBN 978-80-87927-25-0, IISES

133http://www.iises.net/proceedings/24th-international-academic-conference-barcelona/front-page



2. Data and methods 

2.1 Description of experimental data for copper bromide vapor laser  

The CuBr vapor laser is a type of metal vapor laser. It emits in the visible spectrum at two 

wavelengths – green (510.6 nm) and yellow (578.2 nm). The CuBr laser has better 

characteristics compared to lasers in the infrared spectrum (CO2 lasers) including better 

laser beam convergence and focus, less noise, strong beam coherence, etc. It is the 

most efficient source of visible light among metal vapor lasers. CuBr lasers find many 

practical applications in industry for the micro processing of different kinds of materials for 

drilling, cutting, marking, engraving, etc., in high-speed photography, military industry, 

nanotechnology, pulsed holography, for aerial and naval navigation, in atmospheric and 

ocean pollution studies, in medicine and medical research, entertainment and advertising 

and more (Sabotinov 2006; Foster 2005; Zureng et al. 1992; Son et al. 2014; Gocheva-

Ilieva and Iliev 2011).  

Due to its wide range of practical applications the laser continues to be scientifically and 

experimentally developed (Sabotinov 2006). One of the important technological objective 

is the development of new laser devices of this type with enhanced output power. In 

particular, statistical modeling supports the investigation of the influence of the main laser 

operating characteristics (laser tube geometry, input power, neutral gas pressure, etc.) on 

output laser power and allows for predictions to be made. A detailed description of the 

laser device could be found in (Sabotinov 2006).   

In this study we consider the experimental data of CuBr laser devices, developed and 

patented from the Laboratory of Metal Vapor Lasers at Georgi Nadjakov Institute of Solid 

State Physics, Bulgarian Academy of Sciences. The data are collected during the last 40 

years.  

The dataset comprises 10 input basic variables which determine the basic CuBr laser 

operation. These include: D (mm) – inner diameter of the laser tube, DR (mm) – inner 

diameter of the rings, L (cm) – electrode separation (length of the active area), PIN (Kw) 

– input electrical power, PRF (kHz) – pulse repetition frequency, PNE (Torr) – neon gas 

pressure, PH2 (Torr) – hydrogen gas pressure, PL (Kw/cm) – specific electrical power per 

unit length, C (Nf) – equivalent capacity of the condensation battery, TR (oC) – 

temperature of CuBr reservoirs. The response variable is Y=Pout (W) – output laser 

power.  

The sample size is n=387. We have to mention the complexity, long duration and high 

cost of each conducted experiment. The descriptive statistics of the data sample are 

represented in Table 1. 
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2.2 Description of GPSRR and Data Mining Techniques 

The GPSRR method is a generalization of a variety of methods applying a regularization 

in the sense of Tikhonov (Tikhonov 1963). A regularization term is added to the error and 

various penalties are imposed in order to determine the regression coefficients and thus 

achieve better fitting to data by the obtained models. The result is a pool of regression 

models.  

 

Table 1: Descriptive statistics of copper bromide laser characteristicsa 

 Pout, 

W 

D, 

mm 

DR, 

mm 

L, 

cm 

PIN, 

Kw 

PL, 

Kw/cm 

PH2, 

Torr 

PRF, 

kHz 

PNE, 

Torr 

C, 

Nf 

TR, 
oC 

Mean 35.9 46.96 35.30 109.35 2.14 10.84 0.38 21.73 19.94 1.25 474.4 

Median 18.3 46.00 30 50.00 1.40 12.00 0.50 17.00 20.00 1.10 485.0 

Std. Dev. 35.1 9.80 18 69.81 1.26 2.50 0.24 22.16 12.30 0.57 32.8 

Skewness 0.71 -0.81 0.24 0.40 1.0 -0.46 -0.56 4.28 6.59 1.74 -2.38 

Kurtosis -0.94 1.51 -1.59 -1.70 -0.39 0.04 -1.28 17.26 53.36 5.25 7.11 

Minimum 1.5 15 4.5 30 1 1 0.00 4 8 0 350 

Maximum 120 58 58.0 200 5 16.67 0.80 126 150 3.83 590 
an valid for all variables is 387, Std. Error of Skewness = 0.124, Std. Error of Kurtosis = 0.247.  

 

Unlike the conventional regression approach, the GPSRR method is implemented as a 

machine learning technique. Model selection is determined in accordance with the 

chosen type of penalty and its quality is assessed based on performance on test 

samples. To this end, the data are divided randomly in two parts – learn and test 

samples. The models are built using only the data from the learn sample and applied to 

predict the known values from the test sample. Various assessment and validation 

methods could be applied with both classic statistical indices and different techniques for 

cross-validation, bootstrap, etc. (Friedman 2012; SPM 2013).  

Consider a dataset of  n  observations    1 1
, , ,...,


X

n n
i i i i imi=1 i

Y Y X X . As in ordinary multiple 

linear regression, in the GPSRR one aims to find an equation in the linear form 

  0 1
ˆ

  m
j jjY a a X  (1) 

for fitting to these data, where  0 1, ,...,a ma a a  is the vector of the unknown regression 

coefficients. To obtain more exact estimates â  of a , one solves the optimization problem  

       ˆ argmin R P   
 

a

a a a  (2) 

where ( )aR  is the empirical loss function, selected among different error criteria, e.g. the 

sum of squared errors (SSE)  
2

1
ˆ( ) / a n

i iiR Y Y n , ( )aP  is a penalty function and 0   is 

the regularization parameter. 
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In the GPSRR method, the calculations are carried out through sequential path search 

directly in the parameter space under a given penalty ( )aP  without solving the 

optimization problem (2) at each step. Especially, the penalty function in (2) is taken to 

satisfy for all a  the condition 
( )

0, 1,...,


 


a

j

P
j m

a
. 

This includes as a special case the well-known power family for penalty function 

  1( ) , 0 2


     a a m
jjP P a . The case 2   corresponds to Ridge regression (Hoerl 

and Kennard 1970) and the case 1   - to the Lasso (least absolute shrinkage and 

selection operator) (Tibshirani 1996). Other methods of this type are represented by the 

generalized elastic net family with the penalty function   aP  given by 

     2
1 1 / 2 2 , 1 2      a m

j jjP a a , where   is the coefficient of elasticity (Zou and 

Hastie 2005). An extension for 0 1  is obtained in (Friedman 2012).  

GPSRR is realized in Salford SPM package as a very fast forward stepping algorithm 

with specialized variable selection procedures (Friedman 2012, SPM 2013). There is 

generated the collection of models by constructing a path based on selected predictors X  

as a sequence of iterations (steps) in the space of coefficients. At every step a new 

variable, selected to fulfill a complex of criteria is added, or the coefficient of some model 

variable is adjusted. The quality of models can be assured by selecting from a number of 

commonly used goodness-of-fit measures for learn and test samples as the coefficient of 

determination R
2, MSE (mean squared error), AIC, BIC, etc. and validated by ross-

validation procedures.   

Despite its advantages, the GPSRR method exhibits some limitations. The method does 

not provide automatic discovery of nonlinearities, interactions between predictors, or a 

missing values handling feature. To this end, TreeNet stochastic gradient boosting is 

applied for preprocessing the data (Friedman 2001). Also, the usage of GPSRR as a data 

mining engine is highly efficient in combination with model simplification features, realized 

in SPM, such as ISLE (Importance Sampled Learning Ensembles) and RuleLearner (rule 

ensembles) (Friedman and Popescu 2001, 2003). The original model, produced by 

TreeNet is an ensemble of hundreds or even thousands of small trees, represented new 

variables for the model (1). Many of them are usually equal or have very similar structure. 

The compression of the TreeNet model can be performed using an ISLE algorithm by 

removing redundant trees. The coefficients of the models are then adjusted by the 

GPSRR algorithm. Finally, the RuleLearner algorithm has to be applied as a post-

processing technique which selects the most influential subset of nodes, thus reducing 

model complexity of TreeNet. Different combinations of abovementioned techniques can 

be also carried out to obtain the best required models. 
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2.3 Parametric Transformations  

As noted above, the obtained initial GPSRR models in (Gocheva-Ilieva 2014) are not 

satisfactory, especially in the most important region of the higher laser output power, and 

differ from the experiment about 10 to 20%. In order to improve the quality of the models 

and predictions we will perform some preliminary transformations of the dependent 

variable.  

The distribution of the original data for Y=Pout is shown in Figure 1(а). To approximate 

the distribution more closed to the normal distribution we apply the following sequence of 

parametric transformations:  

  1 1 2 2   Y y z y z . (3) 

In order to reduce the skewness of the distribution, first we apply the usual shifted Box-

Cox transformation  

  y1 Log[Y] , (4) 

where Log means the natural logarithm. 

In (3) the standardizations z1, z2 are performed by selecting from two robust 

transformations. The first robust transformation R1 is given by the expression 

(Koekemoer and Swanepoel 2008):  

                       1 1
x x x x x 3 1

ˆ ˆR1: z(t) t ˆ / ˆ , ˆ med(t), ˆ max s , q q / 3 / 4 1/ 4  (5) 

where ( )med t  is the sample median, 2
xs  is the unbiased sample variance, 1 3

ˆ ˆ,q q  are the 

first and third sample quartiles,   is the standard normal distribution function. 

The second robust transformation R2  is (Van der Veeken 2010): 

            x x x xR2: z(t) t ˆ / ˆ , ˆ med(t), ˆ 1.483med t med(t) . (6) 

Parametric transformations (5) and (6) do not change the type of distribution. The next 

transformation y2 y2(z1)  is the John-Drapper transformation (John and Draper 1980) 

  
 

JD

sign(t) ( t 1) 1 / , 0
y (t, )

sign(t)Log( t 1), 0

     
  

  

 . (7) 

In (7), the optimal values of   are estimated by the Jarque-Bera goodness-of-fit test of 

whether sample data have the skewness and kurtosis matching a normal distribution 

(Jarque and Bera 1980; Gel and Gastwirth 2008) and by the Shapiro-Wilk test of 

normality (Shapiro and Wilk 1965). To this end, at a step of 0.01 for  , the minimums of 

Jarque-Bera statistics were calculated by using an author’s code written in Wolfram 

Mathematica.  
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The distribution of the dependent variable Y=Pout and the corresponding standardized 

distributions R1(Y) and R2(Y) are shown in Figures 1: (a), (b), and (c), respectively. The 

obtained statistics of the distribution are: Jarque-Bera statistics=47.121, p-

value=0.00004, Shapiro-Wilk p-value=1.10-19. 

 

Figure 1: Smooth histograms of the initial and applied standardized robust distributions (dashed 

line) in comparison with the normal distribution 
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3. Results with discussions  

3.1 Results from the preliminary data transformations 

By applying the procedure, described in the previous section, there were obtained the 

following optimal values of   for improving the distribution of JDy2 y (z1, )   from (3), (7): 

 1 22.84, 3.23     (8) 

The first value 1  is used in the sequence of transformations:  

 JD 1Y y1 Log(Y) z1 R1(y1) y2 y (z1, )       . (9) 

The minimum Jarque-Bera statistics for 1  is 12.061, p-value=0.00974, Shapiro-Wilk p-

value is 8.10-8. 

The second optimal value 2  is found for the sequence of transformations:  

 JD 2Y y1 Log(Y) z1 R2(y1) y2 y (z1, )       . (10) 

The corresponding statistics are: Jarque-Bera=12.134, p-value=0.00942, Shapiro-Wilk p-

value = 6.10-8.  

The final transformations in (9) or (10) are performed by z2 R1(y2)  or z2 R2(y2) . The 

notations of a given sequence of transformations of Y=Pout  in (3) are shortly denoted by  

 jRs[ ]Rk, s 1,2; j 1,2; k 1,2    . (11) 
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The histograms and boxplots of the obtained improved distributions by (11) are shown in 

Figure 2 and Figure 3, respectively. It is observed that the transformations 1R1[ ] R2  and 

2R2 [ ] R2  give the distributions more closed to the normal. Although these distributions 

are not very close to normal, they help to significantly improve the modeling results. 

 

Figure 2: Smooth histograms of the optimal distributions after transformations compared with the 

normal curve 

 

1R1[ ] R1  

 

1R1[ ] R2  

 

2R2 [ ] R1  

 

2R2 [ ] R2  

 

Figure 3: Box-and-whisker plots of standardized sequential transformations of Y. For 

comparison the last element in every group graph presents the box plot of the 

standardized normal distribution N(0,1). 
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3.2 Construction of GPSRR and Combined Models 

A large number of models were built for untransformed dependent variable Y=Pout and for 

its different preliminary transformations from (3) – (11).  

For each representation in (11), the GPSRR method and data mining techniques were 

applied to obtain combined models. For any of the input data for Y=Pout the pipeline of 

models comprises GPSRR models extracted by TreeNet, RuleLearner and ISLE 

techniques, and their combinatitions, with and without including the initial raw predictors. 

The models have been validated by 10-fold cross-validation technique (SPM 2013). This 

means that the input sample is randomly divided into 10 equal non-intersecting sub-

samples. For each division, the 90% sample is the learn sample and the sub-sample is 

the test sample.  

Normally, the main criterion for model performance is the coefficient of determination R2, 

for the learn and test samples. Standard measures of goodness-of-fit of models such as 

MSE (mean squared error), RMSE (root MSE), MAD (mean absolute deviation) are also 

taken into account. The model performance of the obtained best 7 models M0, M1, …, 

M6 for GPSRR and combined GPSRR with the above mentioned data mining techniques 

for untransformed and transformed variables in (3) are given in Table 2.   

 

Table 2: Summary performance of the best GPSRR and combined models of laser output power 

Pouta 

Model  M0 M1 M2 M3 M4 M5 M6 

Transformations  - 
1R1 [ ]

R1


 1R1 [ ]

R1


 1R1 [ ]

R2


 2R2 [ ]

R1


 2R2 [ ]

R1


 2R2 [ ]

R2


 

Method RL_RP RL_RP ISLE_R

L_RP 

RL_RP RL_RP ISLE_R

L_RP 

RL_RP 

Learn R2 0.9900 0.9870 0.9882 0.9872 0.9870 0.9869 0.9871 

Learn N Coef. 441 185 187 192 209 150 535 

% Compression 76.5% 95.1% 95.0% 94.9% 94.4% 96.0% 85.8% 

Learn RMSE 3.5023 0.1139 0.1084 0.0980 0.1140 0.1142 0.0980 

Learn MSE 12.266 0.0130 0.0118 0.0096 0.0130 0.0130 0.0096 

Learn MAD 2.718 0.0680 0.0635 0.0587 0.0686 0.0682 0.0590 

Test R2 0.989 0.9690 0.9695 0.9695 0.9700 0.9689 0.9701 

Test N Coef. 441 185 187 192 532 177 535 

% Compression 78.0% 96.3% 96.3% 96.2% 89.4% 96.7% 89.3% 

Elasticity (1.1) (1.0) (1.1) (1.1) (1.1) (1.1) (1.1) 

Maximum 

Predicted Pout, W 

110.84 118.73 115.24 118.61 119.09 115.97 119.48 

a Short notations for the methods are: RL_RP (RuleLearner _RawPredictors), ISLE_RL_RP 

(ISLE_RuleLearner_RawPredictors). 
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In Table 2, the best model M0 obtained by initial data of Pout, without preliminary 

transformations, is of type RuleLearner_Raw Predictors and has R2=99.0%. But all other 

measures as MSE, RMSE and MAD are very high with respect to the other models. M0 

predicts only 111W for the maximum of experimental 120W Pout. This way the model is 

not satisfactory, especially in higher output powers. The maximum measured output laser 

power is Pout=120W (see Table 1).  

It is also observed from Table 2, that all the best models M1 – M6 demonstrate very good 

statistical indices both for learn and test samples with R2=98-99.0%. All other indices are 

relatively small and are almost equal. To note that the models M3 and M6 are 

characterized by minimal errors RMSE, MSE and MDA, and give the best performance in 

predictions. The predicted maximum values for Pout for models M2 and M5, obtained by 

ISLE_RuleLearner_RawPredictors method are slightly smaller than the other. This is 

valid for the last higher 20 observations of Pout. Since our goal is to get as more accurate 

predictions for higher values of Pout, these two models will be omitted from our further 

analysis. Figure 4 is an example of the output from the Salford SPM software 

environment, representing the model performance in the case of R2 [3.23] R1 data.   

 

Figure 4: Comparative plot of model performance (in terms of R2) for R2 [3.23] R1 data. The first 

model (noted as Orig.) corresponds to the pure TreeNet model. 
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Table 3:  Variable importance for the best models of laser output power Pouta 

Model Relative importance 

M0 PIN(100), DR(23), PRF(18), C(17), DR(15), PH2(6), L(4), PL(2), PNE(2), TR(0) 

M1 PIN(100), DR(48), PH2(36), D(20), PRF(19), L(17), PNE(16), C(14), TR(14), PL(5) 

M2 PIN(100), DR(48), PH2(36), D(20), PRF(19), L(17), PNE(16), C(14), TR(14), PL(5) 

M3 PIN(100), DR(48), PH2(36), D(20), PRF(19), L(17), PNE(16), C(14), TR(14), PL(4) 

M4 PIN(100), DR(52), PH2(36), D(20), L(20), PRF(19), PNE(17), C(14), TR(14), PL(5) 

M5 PIN(100), DR(52), PH2(36), D(20), L(20), PRF(19), PNE(17), C(14), TR(14), PL(5) 

M6 PIN(100), DR(52), PH2(36), D(20), L(20), PRF(19), PNE(17), C(14), TR(14), PL(4) 
aThe maximum value is taken to be equal to 100 absolute units.  
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Another important point is the evaluation of the impact of the variables in the model.  

Table 3 shows the importance of the ten predictors in the derived models. It is observed 

similar values for models M1-M6. One can conclude that the influence of the predictors is 

stable within the 3-4 relative units. Big difference is observed for M0 and other models, 

which explains its lower performance.  

Scatter plots in Figure 5 illustrate the comparison between Pout and the predicted values 

by the models M0 (without transformation), M3 and M6, respectively. The experimental 

measurements are very well replicated by the last two models. It can be observed that 

the models M3 and M6 give much better prediction, especially for the last 50 cases. 

 

Figure 5: Comparison of all experimental data versus the predicted values with a 5% confidence 

intervals from: model M0, model M3 and model M6 (see also Table 2)   
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3.3 Using the Models for Prediction of Future Experiments 

As it is mentioned above from a practical point-of-view, the predictions of the models in 

the region of high laser output powers are more important.  Moreover, the ultimate goal is 

the ability of models to predict future experimental results (extreme experiment). 

To this end, some cases (sets) of given values for the input laser characteristics have 

been selected as “future” experiment. Based on the best models, the corresponding 

outcomes were calculated. The obtained predicted values are given in Table 4. The 

model M0, obtained by the method GPSRR/RuleLearner_RawPredictors shows only 1% 

increase. For the other models derived by the same method for the transformed data, it is 

observed up to 15% possible increase in the output laser power. 

 

Table 4: Prediction for future experiments with increased output powera 

Case Laser characteristics  Model 

 
D, 

mm 

DR, 

mm 

L, 

cm 

PIN, 

Kw 

PL, 

Kw/cm 

PH2, 

Torr 

PNE, 

Torr 

TR, 
oC 

 M0 M1 M3 M4 M6 

0 58 58 200 5 12.5 0.6 20 490  111 119 117 119 120 

1 68 65 220 5.3 11.82 0.6 20 500  116 128 128 128 128 

2 70 68 240 5.7 11.88 0.5 21 500  120 132 132 131 131 

3 70 70 240 5.5 11.46 0.3 20 500  117  122 121 120 120 

4 70 70 240 5.6 11.67 0.4 20 500  119 129 129 128 128 

5 70 70 240 5.7 11.88 0.5 21 500  120 134 134 132 132 

6 75 73 230 5.3 11.52 0.3 20 500  115 123 121 120 120 

7 75 73 230 5.3 11.52 0.5 20 500  117 133 133 131 131 

8 75 73 240 5.5 11.46 0.3 21 500  118 124 122 121 121 

9 75 73 240 5.5 11.46 0.5 21 500  119 135 135 132 133 

10 75 75 240 5.7 11.88 0.3 21 500  120 128 126 125 125 

11 75 75 240 5.7 11.88 0.5 21 500  121 138 138 136 136 

 
        

 1% 15% 15% 13% 14% 
a
The values of some operating laser characteristics are fixed as follows: PRF=17.5kHz and  C=1.3Nf. The 

case 0 is the experiment with the highest measured Pout=120W. 

 

4. Conclusion  

Appropriate transformations of data for improving the distribution of the dependent 

variable closer to the normal distribution were proposed. Based on the new GPSRR 

method, enhanced by the machine learning statistical techniques, high performance 

models of laser generation of CuBr metal vapor lasers depending on 10 basic laser 

operating characteristics were built. The best models were selected with higher predictive 

ability in the region of the highest values of the output power. The models were applied 
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for predicting of future experiment that showed up to 15% increasing of the output power 

of the laser device. 

The derived models can be further used in estimation and prediction of current and future 

experimental outcomes in order to improve the output laser characteristics, in our case 

the very important one – the output laser power. Along with the importance of the new 

derived models for the considered problem in laser technology, the proposed 

methodology and results clearly show that preliminary transformations of data to improve 

the normality of the data could significantly increase the predictive ability of the new 

GPSRR technique. This is especially effective in practical applications for relatively small 

data samples, in presence of high multicollinearity, non-linear dependencies and non-

normal distribution of the initial variables.   
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