RAKESH KAWATRA

Minnesota State University-Mankato, USA

TWO-PHASE HEURISTIC FOR CAPACITATED DEGREE CONSTRAINED MIN-SUM ARBORESCENCE

Abstract:

We present a two-phase heuristic for designing a capacitated degree constrained min sum arborescence. For a given directed graph G(V,E) where $V=\{0, 1,...,n\}$ with nonnegative costs Cij for each (i,j) $\in E$, our heuristic finds a minimum cost arborescence rooted at node 1 that spans the set $\{0, 1,...,n\}$ with a constraint that the number of edges incident on each node $i \in \{1,2,...,n\}$ is limited to a predetermined number constrained by the number of ports available on them (degree constraint). Additionally, the polling and response time constraints limit the number of nodes in the sub-trees rooted at node 1 (capacity constraint) predefined number. Lower bounds given for the integer programming formulation of the problem by our heuristic is used to estimate the quality of the solutions. Experimental results over a wide range of problem structures show that the two-phase heuristic gives verifiably good solutions to this problem.

Keywords:

Integer programming; network design; heuristics; Lagrangian relaxation

JEL Classification: C00, C61, C60