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Abstract:
Correlation indicates the strength of the linear relationship between two random variables and is
therefore relevant for asset pricing, portfolio choice and risk management. In addition, forecasts of
correlation dynamics allow for a better evaluation of the systemic risk and may give an initial signal
about potential crises (Engle (2009)).
This paper aims to evaluate daily correlation forecasts. For the calculation of the correlation
forecasts, the BEKK model of Engle and Kroner (1995) and the DCC model of Engle (2002) are
applied. Since there is no clear suggestion regarding the sampling scheme to estimate the realized
correlations from intraday data (Andersen et al. (2006)), several experimental schemes with
different sampling intervals are examined. Following Komunjer and Owyang (2012), a multivariate
loss function which may be asymmetric is used to measure the distance between model correlation
forecasts and realized correlations.
The data sample contains intraday high-frequency and closing prices of the three major US indices:
S&P 500, NASDAQ 100 and Russell 2000. Based on the results obtained so far, the following
conclusions can be drawn: (i) Both models better predict correlations for the pair S&P 500 and
NASDAQ 100 than for Russell 2000 and other two indices. (ii)  The DCC model performs better than
the BEKK model applying the symmetric loss function. (iii) On the basis of the correlation pairs
between the Russell 2000 index and other two indices, the optimal degrees of asymmetry are
negative for the BEKK forecast errors and positive for the DCC forecast errors in most cases. (iv) The
degrees of asymmetry depend on the choice of sampling schemes for calculating the realized
correlations. (v) Both models are unable to capture the sudden decrease of correlations during the
crisis period.
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1 Introduction 

Financial markets quickly respond to the future expectation of different market participants, 

resulting in a continuous change of asset prices. Dynamic correlations measure the degree to which 

two or more assets move together in time. On the one hand, correlations are critical inputs for the 

common tasks of financial management. For instance, the valuation of financial products such as 

quanto option, correlation swap, CDS and CDO depends on the anticipated future correlations. On 

the other hand, correlation risk, referred to the adverse movements in correlations, is widely used 

to measure systematic risk (Engle (2009)). A sharp increase in correlations from September 2008 

to March 2009 implies large unexpected contagion losses across the global economy.  

From econometric literature, one of the easiest model for estimating and forecasting covariance 

and correlation over time is the Exponentially Weighted Moving Average (EWMA) Approach 

proposed by RiskMetrics (see J.P. Morgan and Reuters (1996)). However, the assumption of a 

single decay factor for all assets is not convincing. In comparison, the multivariate GARCH models 

such as the VECH model of Bollerslev et al. (1988) and the BEKK model of Engle and Kroner 

(1995) estimate the optimal weighting parameters based on the sample data. For practical 

applications, the number of parameters explodes as the number of assets increases, causing 

estimation and implementation problems. Commonly applied alternatives to forecast the large-

scale time-varying correlation matrices are the Dynamic Conditional Correlation (DCC) model of 

Engle (2002) and the Varying Conditional Correlation (VCC) model of Tse and Tsui (2002). 

Moreover, Cappiello et al. (2006) present an asymmetric specification of conditional correlations 

while Hafner and Frances (2006) generalize the DCC model by allowing asset-specific correlation 

sensitivities. 

The choice of a particular forecasting model leads to the theoretical discussion about flexibility and 

feasibility (see De Almenda (2018)). In this paper, we choose the first-order BEKK model as a 

possible flexible model and compare its forecast performance with the more restrictive first-order 

DCC model in a forecast evaluation framework. Using the available empirical data, the following 

three research questions will be studied: 

• Do we need both the BEKK and the DCC model? 

• How do both models perform over time, especially during the crisis period of 2008/9? 

• Does a specific model choice reflect the asymmetric user preference over a defined 

forecasting period? 

2 Methodological Considerations 

In this paper, the bold symbol in lowercase represents a vector and the capitalized bold symbol 

represents a matrix while the light symbol refers to the data observation. 

2.1 Multivariate GARCH Models 

Let 𝒓𝑡 be a vector containing 𝑛 asset returns. The multivariate decomposition can be written as 

𝒓𝑡 = 𝑴𝑡 + 𝝐𝑡,      𝝐𝑡 = 𝑯𝑡
1/2

𝒁𝑡,      𝒁𝑡 ∼ 𝑖𝑖𝑑 𝑁(𝟎, 𝑰),      𝝐𝑡| 𝐹𝑡−1 ∼ 𝑁(𝟎, 𝑯𝑡)   (1) 

where 𝑴𝑡 and 𝑯𝑡 denote the conditional mean vector and the conditional covariance matrix for 𝒓𝑡. 

Because this paper focuses on the daily data, it is plausible to assume 𝑴𝑡 = 𝐸(𝒓𝑡|𝐹𝑡−1) = 𝟎 and 

𝒓𝑡 = 𝝐𝑡. 
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The 𝐵𝐸𝐾𝐾(1,1,1) model of Engle and Kroner (1995) specifies the covariance matrix 

 𝑯𝑡 = 𝑪𝑪′ + 𝑨𝒓𝑡−1𝒓𝑡−1
′ 𝑨′ + 𝑩𝑯𝑡−1𝑩′ (2) 

with 0.5𝑛(𝑛 + 1) + 2𝑛2  parameters and guarantees positive semidefinteness under very weak 

regularity conditions. However, even the simple BEKK model suffers from the curse of 

dimensionality and the estimation is computationally infeasible for a larger system with 𝑛 > 5, see 

Ledoit et al. (2003). 

The 𝐷𝐶𝐶(1,1) model of Engle (2002) shows an alternative decomposition of the covariance matrix 

𝑯𝑡 = 𝑫𝑡𝑹𝑡𝑫𝑡 (3) 

where 𝑫𝑡  and 𝑹𝑡  represent the diagonal matrix of the conditional standard deviations and the 

conditional correlation matrix, respectively. The DCC model can be estimated in two steps at lower 

computational costs. In the first step, the univariate volatilities of 𝑛 individual assets are estimated 

in a 𝐺𝐴𝑅𝐶𝐻(1,1) framework, resulting in an estimate of �̂�𝑡. Then, the vector of volatility-adjusted 

returns �̂�𝑡 = �̂�𝑡
−1𝒓𝑡  and the corresponding long-run correlation matrix �̂� =

1

𝑇𝑖𝑛
∑ �̂�𝑡

𝑇𝑖𝑛
𝑡=1 �̂�𝑡

′  are 

calculated with the in-sample length 𝑇𝑖𝑛. In the second step, the symmetric positive definite quasi-

correlation matrix is given by 

𝑸𝑡 = (1 − 𝛼 − 𝛽) ∙ �̂� + 𝛼 ∙ �̂�𝑡−1�̂�𝑡−1
′ + 𝛽 ∙ 𝑸𝑡−1 (4) 

The persistence factor 𝛼 + 𝛽 defines the speed of mean-reversion. Subsequently, both parameters 

are separately estimated using the maximum likelihood method for the correlation part. The 

estimated �̂�𝑡 is re-scaled 

�̂�𝑡 = diag{�̂�𝑡}
−1/2

�̂�𝑡diag{�̂�𝑡}
−1/2

 (5) 

to ensure that the diagonal elements are one and the off-diagonal elements are between minus 

one and one. 

2.2 Evaluation of Correlation Forecasts 

Denoting the full set of the possible correlation matrices and of the possible candidate models by 

�̇� and �̇�, the optimal model correlation matrix on the day 𝑡 is  

𝑹𝑖,𝑡
∗ = arg min

𝑹𝑖,𝑡∈�̇� 

 𝐿(𝑷𝑡 , 𝑹𝑖,𝑡),     ∀𝑖 ∈ �̇� 
(6) 

where 𝐿  and 𝑷𝑡  indicate the loss function of a unknown forecaster and the true conditional 

correlation matrix, respectively. 

Since the 𝑷𝑡 is latent, a benchmark proxy matrix is needed for the evaluation framework. Therefore, 

the feasible realized correlation matrix of Andersen et al. (2000) will be used, given the availability 

of high-frequency data.  

Using an equidistant calendar-time sampling scheme of Hansen and Lunde (2006), the daily 

interval [𝑎, 𝑏] is equally divided into 𝑚 subintervals with 𝑎 = 𝑡0(𝑚) < ⋯ < 𝑡𝑚(𝑚) = 𝑏. Let 𝒑 be the 

𝑛𝑥1 price vector, the vector of intraday continuously compounded returns over the 𝑖th subinterval 

can be formulated as 

𝒓𝑡𝑖(𝑚) = log(𝒑𝑡𝑖(𝑚)) − log(𝒑𝑡𝑖−1(𝑚)). (7) 

The realized correlation matrix �̂�𝑡 is 
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�̂�𝑡 = diag{∑ 𝒓𝑡𝑖(𝑚)𝒓𝑡𝑖(𝑚)
′𝑚

𝑖=1 }
−0.5

∑ 𝒓𝑡𝑖(𝑚)𝒓𝑡𝑖(𝑚)
′𝑚

𝑖=1 diag{∑ 𝒓𝑡𝑖(𝑚)𝒓𝑡𝑖(𝑚)
′𝑚

𝑖=1 }
−0.5

. (8) 

To gain more information efficiency, the robust averaging and subsampling technique of Zhang et 

al. (2005) is applied for calculating the feasible subsampled realized correlation matrix. 

According to Laurent et al. (2013), the consistency of ordering based on proxy matrices is ensured 

when the underlying loss function is well defined. However, the robust family of loss functions in 

Patton and Sheppard (2009) does not include the possibility to separately model the asset-specific 

user preferences, whereas the approach of Komunjer and Owyang (2012) does. 

Given a forecast error vector1 containing 𝑙 correlation pairs 

𝒆𝑡+1 = (

𝑒1,𝑡+1

⋮
𝑒𝑙,𝑡+1

),     𝑒𝑖,𝑡+1 = �̂�𝑖,𝑡+1 − 𝑓𝑖,𝑡+1,     𝑖 = 1, … , 𝑙 =
𝑛(𝑛 − 1)

2
  (9) 

the 𝑙-variante loss on the forecast day 𝑡 + 1 is defined by Komunjer and Owyang (2012) as 

 𝐿𝑝(𝝉,  𝒆𝑡+1) = (‖𝒆𝑡+1‖𝑝 + 𝝉′𝒆𝑡+1)‖𝒆𝑡+1‖𝑝
𝑝−1

,     ‖𝒆𝑡+1‖𝑝 = (|𝑒1,  𝑡+1|
𝑝

+  …  + |𝑒𝑙,  𝑡+1|
𝑝

)
1/𝑝

 (10) 

with 𝝉 = (𝜏1, … , 𝜏𝑙)′ as the vector for asymmetric preference and 𝑝 ≥ 1 as the degree of curvature. 

For all 𝑖 = 1, … , 𝑙, the condition −1 ≤ 𝜏𝑖 ≤ 1 holds. 

2.3 Optimal Preference of Forecasters 

The orthogonal moment condition combines the first-order derivative of Equation (10) and the 

vector of 𝑘 instrumental variables 𝒘𝑡 = (1, 𝑤1,𝑡, … , 𝑤𝑘,𝑡)′  with the Kronecker product: 

𝒈𝑝(𝝉,  𝒆𝑡+1, 𝒘𝑡) = [𝑝𝝊𝑡(𝒆𝑡+1) + 𝝉‖𝒆𝑡+1‖𝑝
𝑝−1

+ (𝑝 − 1)𝝉′𝒆𝑡+1‖𝒆𝑡+1‖𝑝
−1𝝊𝑡(𝒆𝑡+1)]⊗ 𝒘t. (11) 

Over a defined forecast period, the optimal preference is calculated 

�̂�∗ = min
𝝉∈ℝ𝑛 with −1≤𝜏𝑖≤1

[𝑇𝑜𝑢𝑡
−1 ∑ 𝒈𝑝(𝝉, �̂�𝑡+1, 𝒘𝑡)

𝑇𝑖𝑛+𝑇𝑜𝑢𝑡−1

𝑡=𝑇𝑖𝑛

]

′

�̂�−1 [𝑇𝑜𝑢𝑡
−1 ∑ 𝒈𝑝(𝝉, �̂�𝑡+1, 𝒘𝑡)

𝑇𝑖𝑛+𝑇𝑜𝑢𝑡−1

𝑡=𝑇𝑖𝑛

]  (12) 

using the GMM method of Hansen (1982), where 𝑇𝑜𝑢𝑡 represents the length of the out-of-sample 

forecast period and �̂� is a consistent estimator of  

𝑺 = 𝐸[𝒈𝑝(𝝉0,  𝒆𝑡+1, 𝒘𝑡)𝒈𝑝(𝝉0,  𝒆𝑡+1, 𝒘𝑡)′]  (13) 

with an initial asymmetry vector 𝝉0. 

3 Data Description 

The historical intraday split and dividend-adjusted index values of S&P 500, NASDAQ 100 and 

Russell 2000 from the sample period 1997-2016 are gathered from the PiTrading Database. All 

these values are provided in one-minute time intervals, covering the full trading day starting from 

9:30 to 15:30 EST and including opening, closing, highest and lowest values.  

 
1 �̂�𝑖,𝑡+1 denotes the 𝑖th correlation pair from the ex-post subsampled proxy matrix �̂�𝑡+1, while 𝑓𝑖,𝑡+1 denotes the 𝑖th correlation pair 

from forecasted model correlation matrix �̂�𝑡+1. 
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To better illustrate the stock market developments over time, we sample for each day the last 

closing value, calculate the corresponding returns and present the daily patterns in Figure 1.  

 

Figure 1: Sample Paths on Daily Close Index Value and Compounded Return 

 

Note:  The compounded daily returns are reported in percent. 

 

Following the sample patterns of these three indices and the important events of stock market 

history (see e.g. Schiller (2005)), we divide the full time period into five different sub-periods: 

• P1 (1997/01/02 – 2000/03/10): Millennium Boom 

• P2 (2000/03/13 – 2002/10/07): Burst of Dot-Com Bubble  
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• P3 (2002/10/08 – 2008/09/12): Recovery and Uncertainty 

• P4 (2008/09/15 – 2009/03/09): Intense Stage of Global Financial Crisis  

• P5 (2009/03/10 – 2016/12/30): Post-Crisis and New-Normal Boom 

The grey shades highlight the two crisis sub-periods with high volatility while the white shades mark 

the three normal sub-periods with low volatility. 

To better understand the co-dynamics among different market segments, we apply the estimation 

methods of EWMA, BEKK and DCC and show three correlation pairs in Figure 2. 

 

Figure 2: Correlation Estimates 

 

 

Figure 2 gives rise to three findings: First, all the methods show similar correlation paths over time. 

Second, the burst of speculative dot-com mania in sub-period P2 affects the high-tech and small-

cap companies more than the big-cap companies, causing a sudden correlation decrease for the 

index pairs S&P 500 – NASDAQ 100 and S&P 500 – Russell 2000 after March 10, 2000. Third, 

because the same macroeconomic shocks influence almost all industries in the same way during 

sub-period P4, high correlations for all three index pairs are observed. 

4 Forecast Performance Evaluation 

In this section, we compare the one-step ahead forecast performance of BEKK and DCC models 

over the full evaluation period and all the sub-periods. In general, we construct an initial estimation 
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sample from January 2, 1997 to December 31, 1998 and an evaluation sample from January 4, 

1999 to December 30, 2016. Then, we forecast with the expanding (E) and rolling window (R) 

estimation strategies. Based on the Equation (9), we calculate the forecast error vectors applying 

the realized correlation matrices. Subsequently, the model ranks are determined with regard to the 

choice of different evaluation measures.   

4.1 Symmetric Loss 

In Figure 3, we show the evaluation results for the index pair S&P 500 – NASDAQ 100. The first 

subplot presents the selected benchmark proxies and both model forecasts over time. It is obvious 

that the 5-minute subsampled realized correlation proxies (RCOR-5.S) in black dashed line exhibit 

a dynamic structure with the sudden increase and decrease of correlations. This finding is 

consistent with the Epps effect in the literature, when the sampling frequency is increased (see 

Epps (1979)). Besides, the BEKK forecasts show a volatile structure while the process of DCC 

forecasts is relatively smooth and tends to overestimate the RCOR-5.S. The remaining subplots 

present the patterns of the forecast errors and the patterns of the evaluation measures. For 

calculating the Mean Error (ME), the Mean Absolute Error (MAE) and the Root Mean Squared Error 

(RMSE), we define an initial evaluation window with the first 50 forecast errors and expand it over 

time. Regarding the reported evaluation measurements in Table 1 during the full period, the BEKK 

model has a lower absolute ME than the DCC model corresponding to greater MAE and RMSE. A 

reasonable explanation is that the BEKK forecasts depend on the estimation of a larger number of 

unknown parameters, leading to a higher accuracy and more sensitivity in the evaluation period. 

However, this bias variance trade-off is partially observed during the crisis sub-period P4. 

 

Table 1: Model Forecast Performance for S&P 500 – NASDAQ 100 

 Full Evaluation Period Sub-Period P4 

 ME MAE RMSE ME MAE RMSE 

BEKK–E 0.012 0.066 0.097 -0.030 0.036 0.056 

DCC–E -0.021 0.045 0.069 -0.022 0.031 0.052 

BEKK–R -0.015 0.064 0.094 -0.016 0.041 0.059 

DCC–R -0.030 0.047 0.072 -0.026 0.033 0.054 

Note:  For each column, the lowest measurement values are highlighted in bold. 

 

Although the use of a moderate five-minute sampling interval is highly recommended for the user 

of realized volatility (see Liu et al. (2015)), there has been little discussion on the preferred sampling 

interval for realized correlations (see Andersen et al. (2006)). Hence, we use 30 equally spaced 

sampling intervals for calculating the 1min – 30min subsampled realized correlation matrices and 

repeat the analysis for the daily forecast horizon. 
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Figure 3: Forecast Error Evaluation for S&P 500 – NASDAQ 100 
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For the index pair S&P500 – NASDAQ 100, Figure 4 shows the empirical rankings of both 

correlation models estimated with the expanding and rolling window schemes. In most cases, the 

BEKK model outperforms with a high sampling interval of one-minute while the DCC model 

outperforms with moderate and low sampling intervals. This is not particularly surprising since the 

BEKK forecasts better describe the noisy realized correlations with a higher sampling interval. 

During the crisis sub-period P4, the proxy correlations are relatively high and the fluctuations of 

these proxy correlations are relatively low. As expected, the smooth DCC model shows a strong 

forecast performance regardless of the choice of sampling intervals.  

For the next step, we present the evaluation results of the remaining two index pairs in Figure 5 

and Figure 6. For the sub-period of dot-com bubble burst P2, the correlation forecasts for the index 

pair S&P 500 – NASDAQ 100 clearly outperform the correlation forecasts between Russell 2000 

and other two indices. This is because the bankruptcy of the listed small-cap companies leads to 

the change of the index composition, thus making the forecast of co-movements with Russell 2000 

more difficult. Another possible reason for this is that the choice of five-minute sampling interval for 

S&P 500 – Russell 2000 and NASDAQ 100 – Russell 2000 distorts the estimation of latent 

correlations by inducing too much microstructure noise. Therefore, subsampled realized 

correlations with lower sampling intervals may be more appropriate for this empirical evaluation. 

4.2 Asymmetric Loss 

An alternative evaluation approach uses the aggregated loss function of Komunjer and Owyang 

(2012). Setting the curvature parameter of Equation (10) to 𝑝 = 2, we consider three types of 

forecasters and present the aggregated average losses in Table 2 with four representative sampling 

intervals. 

 

Table 2: Aggregated Model Forecast Performance based on Komunjer and Owyang (2012) 

 

Note:  For each column, the lowest measurement values are highlighted in bold. 
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Figure 4: Model Rankings implied by ME (left), MAE (middle) and RMSE (right) 

 

Note:  Ranks from 1 (best) to 4 (worst) for the index pair S&P 500 – NASDAQ 100 
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Figure 5: Forecast Error Evaluation for S&P 500 – Russell 2000 
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Figure 6: Forecast Error Evaluation for NASDAQ 100 – Russell 2000 
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In Table 2, the first forecaster is assumed to be risk neutral. On average, the BEKK model is 

preferred for the one-minute sampling interval while the DCC model is preferred for the other three 

sampling intervals. For the sub-period P4, the DCC model has lower average aggregated losses 

than the BEKK model which is consistent with the earlier finding in Figure 4.  

The underlying loss functions of the second and third forecaster are assumed to be asymmetric. 

Regarding to all index pairs, the second forecaster suffers more from the positive forecast errors 

(underestimation) than from the negative forecast errors of the same magnitude (overestimation) 

while the third forecaster penalizes overestimation more than underestimation. Given the lower 

aggregated average losses, the results of Table 2 show that both forecasting models are more 

suitable to the second forecaster.  

4.3 Optimized Asymmetric Loss 

This subsection discusses the asymmetric preferences of forecasters. Figure 7 describes the 

relationship between the optimal GMM estimates in Equation (12) and the sampling intervals 

without instrumental variables (IV) except constants. Considering the following sets of IV A and B 

𝒘𝐴𝑡 = (1, 𝑟𝑆&𝑃500,𝑡−1, 𝑟𝑁𝐴𝑆𝐷𝐴𝑄100,𝑡−1, 𝑟𝑅𝑢𝑠𝑠𝑒𝑙𝑙2000,𝑡−1)
′
, 

 𝒘𝐵𝑡 = (1, 𝑟𝑆&𝑃500,𝑡
2 , 𝑟𝑁𝐴𝑆𝐷𝐴𝑄100,𝑡

2 , 𝑟𝑅𝑢𝑠𝑠𝑒𝑙𝑙2000,𝑡
2 )

′
 

(14) 

we are able to estimate the asymmetry parameters and test the forecast efficiency simultaneously. 

However, the GMM results in Figure 8 are similar to the estimates in Figure 7 and could be therefore 

interpreted by the same way. 

Turning to Figure 7, we predominantly observe positive �̂�2
∗ and �̂�3

∗. Consequently, loss appears to 

be larger with the underestimation of correlation proxies than with the overestimation by the same 

size for the index pairs S&P 500 – Russell 2000 and NASDAQ 100 – Russell 2000. In particular, 

the DCC users show higher degrees of asymmetry than the BEKK users, implying a larger tendency 

to overestimate. Further, the rolling window estimation scheme leads to higher degrees of 

asymmetry than the expanding window estimation scheme. Regarding �̂�1
∗, the DCC–E users seem 

to have negative degrees of asymmetry in most cases while the optimal preferences of the 

remaining users depend on the sampling schemes for calculating the subsampled realized 

correlations. 

5 Conclusion 

This paper evaluates the forecast performance of two widely used models for forecasting time-

varying correlation matrices. Analyzing 20 years of intraday data on the three major U.S. equity 

indices, we summarize our main findings as follows.  

Firstly, we observe the empirical trade-off between the flexibility and feasibility. Secondly, the 

evaluation sample performance of BEKK model improves when the sampling interval for realized 

correlations increases. Thirdly, both BEKK and DCC models perform better during the crisis sub-

period P4 than during the whole evaluation period. In particular, the DCC model demonstrates a 

strong forecast performance in sub-period P4. Moreover, both models better predict correlations 

for the index pair S&P 500 – NASDAQ 100 than for Russell 2000 and other two indices. Finally, the 

specific model choice reflects the asymmetric user preference. For the index pairs S&P 500 – 

Russell 2000 and NASDAQ 100 – Russell 2000, the DCC users demonstrate higher positive 

degrees of asymmetry than the BEKK users. 
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Figure 7: Optimal Preferences without Instruments 

 

Note:  Reported are the GMM estimates �̂�𝟏
∗  (left), �̂�𝟐

∗  (middle) and �̂�𝟑
∗  (right) 
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Figure 8: Optimal Preferences using IV Sets A and B 

 

Note:  Reported are the GMM estimates �̂�𝟏
∗  (left), �̂�𝟐

∗  (middle) and �̂�𝟑
∗  (right) over the full evaluation period 

 

The research in the field of forecasting and evaluating correlation matrices is still ongoing. 

Discussions about consistent multivariate loss functions (see Laurent et al. (2013)), appropriate 

sampling intervals and further instrumental variable sets are interesting avenues for future analysis. 
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