
05 June 2023, 18th Economics & Finance Conference, London ISBN 978-80-7668-006-7, IISES

DOI: 10.20472/EFC.2023.018.004

HARSIMRAT KAELEY
University of California, Irvine, United States

YE QIAO
University of California, Irvine, United States

NADER BAGHERZADEH
University of California, Irvine, United States

SUPPORT FOR STOCK TREND PREDICTION USING
TRANSFORMERS AND SENTIMENT ANALYSIS

Abstract:
Stock trend analysis has been an influential time-series prediction topic due to its lucrative and
inherently chaotic nature. Many models looking to accurately predict the trend of stocks have been
based on Recurrent Neural Networks (RNNs). However, due to the limitations of RNNs, such as
gradient vanish and long-term dependencies being lost as sequence length increases, in this paper
we develop a Transformer based model that uses technical stock data and sentiment analysis to
conduct accurate stock trend prediction over long time windows. This paper also introduces a novel
dataset containing daily technical stock data and top news headline data spanning almost three
years. Stock prediction based solely on technical data can suffer from lag caused by the inability of
stock indicators to effectively factor in breaking market news. The use of sentiment analysis on top
headlines can help account for unforeseen shifts in market conditions caused by news coverage. We
measure the performance of our model against RNNs over sequence lengths spanning 5 business
days to 30 business days to mimic different length trading strategies. This reveals an improvement
in directional accuracy over RNNs as sequence length is increased, with the largest improvement
being close to 18.63% at 30 business days.

Keywords:
Stock Prediction, Machine Learning, Recurrent Neural Network, LSTM, Transformer, Self Attention,
Sentiment, Analysis, Technical Analysis

JEL Classification: C32, C35, E37

52

https://doi.org/10.20472/EFC.2023.018.004

1 Introduction

Investing in the stock market can prove to be a very lucrative endeavor, to such an extent

that massive corporations exist today solely by gleaning most of their profit from predicting

stock market trends. Consequently, tools that help make investment decisions are of high

value, and the onset of new markets bolster their demand.

Deep convolutional neural networks (CNN) have achieved incredible results in computer

vision, speech recognition, object detection, natural language processing, and many other

fields (LeCun, Bengio, and Hinton 2015) (Qiao, Alnemari, and Bagherzadeh 2022) (Ding,

Qiao, and Bagherzadeh 2023). Deep learning is unlike any other market prediction tactic in

that it allows for the creation of multi-layered computational models. Given a dataset that

contains input features representing different aspects of the prediction problem, these

models are able to extract latent relationships between the features. Each layer builds upon

the previous layer’s feature output to learn different levels of abstraction, but when

combined they accurately represent the prediction problem (LeCun, Bengio, and Hinton

2015).

The prediction task in this paper consists of using technical and sentiment data

from an n day lag period to predict the (n+1) day’s normalized opening price. We

normalized each technical feature and label in our novel dataset to allow our

model to focus on trend prediction over the specifics of stock pricing.

Our model relies on two factors for its performance increase over increased

sequence lengths compared to conventional RNNs. The first being its

Transformer backbone’s ability to effectively capture long-term dependencies,

through the use of self-attention (Vaswani et al. 2017). By using self-attention, the

context between each day in a given input sequence is maintained as it is directly

encoded into the input.

The second factor offering an increase in performance is the extra context offered

by conducting sentiment analysis on news headlines. Predicting stock trends

using only technical data analysis does well at capturing overall market

conditions, but its inherent lag and use of past estimates can lead to a disconnect

between the data and current stock movements (Lawrence 1997). Therefore the

latest news, which is most relevant for the future, will see its effect on a given

technical indicator be suppressed amongst the indicator’s values during the

previous days.

Since news headlines change every day and can impact stock performance,

unlike technical data which only measures the performance, it makes them a

more dynamic source to cover changes in the market. Directly encoding them into

model input will help to mitigate the lag of technical indicator analysis. In fact,

combining sentiment analysis on news headlines with technical analysis has been

shown to improve model performance for stock price prediction as opposed to

solely using technical analysis (Deng et al. 2011).

05 June 2023, 18th Economics & Finance Conference, London ISBN 978-80-7668-006-7, IISES

53

To our knowledge, the capabilities of using Transformers in stock trend prediction

have not been fully investigated past window sizes of 2 weeks (Zhang et al.

2022). Therefore, in this work, we aim to compare our Transformer based model’s

performance to RNN models across longer time sequences. We experimented

with window sizes of 1 week (n=5), 2 weeks (n=10), 3 weeks (n=15), 5 weeks

(n=25), and 6 weeks (n=30). Each window size is analogous to a different time-

based trading strategy, with 6 weeks being the longest strategy discussed in this

paper.

2 Related Works

Various RNN-based stock prediction methods have been applied to stock trend prediction

using either technical data, sentiment data, or a combination of both, but in this paper, we

focus on comparisons to the LSTM and GRU.

The LSTM (Hochreiter and Schmidhuber 1997) has long been used as an alternative to

basic Recurrent Neural Networks for time series prediction tasks due to its ability to combat

gradient vanish/explosion over longer sequences, and its ability to better capture long-term

dependencies. Both of these are necessary features for a successful time-series prediction

model. The model is comprised of three gates. The forget decides what information is

remembered for future predictions, the input gate determines the importance of the input,

and the output gate uses information passed through the previous two gates to output the

next hidden state of the model. Usually, the final hidden state is used as the model’s overall

output. The next RNN model mentioned in our study is the GRU (Cho et al. 2014). The

GRU’s approach is similar to the LSTM. It consists of an update gate which decides on

what amount of information to keep from previous time steps, and a forget gate which

decides what information from previous time steps is not needed.

Jin et al. (2020) performed stock trend prediction by using an LSTM-based model to

evaluate a dataset comprised of AAPL investor sentiment and technical data. The lag

window was set to n=30 meaning that their model was used to predict the opening price of

the 31st day. Their model architecture, called S_EMDAM_LSTM, consists of a CNN

component to conduct sentiment analysis followed by a final Attention-LSTM which

outputted the trend prediction using the technical data and CNN sentiment output. Our work

differs as our entire architecture involves only Transformer based model.

Another study done by Khaled et al. (2018) was conducted using solely the LSTM

architecture for stock trend prediction. This paper utilizes a Bidirectional LSTM (Bi-Dir

LSTM) and a window size of n=10 days for a prediction task similar to ours. Their dataset

consisted of technical data on the S&P 500. The implemented Bi-Dir LSTM includes two

layers, where one performs operations in the normal order of the data sequence, and the

other performs its operations in the reverse order of the sequence. The additional context

offered by this reversed processing has been found to achieve higher performance than the

05 June 2023, 18th Economics & Finance Conference, London ISBN 978-80-7668-006-7, IISES

54

Unidirectional LSTM (Graves and Schmidhuber 2005). The model is tuned and trained on

financial data but doesn’t incorporate sentiment analysis.

The last work we consider is by Shahi et al. (2020) They conduct stock trend prediction

using a dataset composed of both scraped technical and sentiment data for stocks listed in

the Nepal Stock Exchange (NEPSE), Initial Public Offering (IPO), Further Public Offering

(FPO). This paper uses a window size of n=15 days to train LSTM and GRU models on the

data above to conduct a comparative study on the two model types.

3 Proposed Method

3.1 Dataset Description and Analysis

Our dataset consists of 11 features: date, ticker symbol, opening price, the highest price of

the day, lowest price of the day, closing price, relative strength index (RSI), exponential

moving average (EMCA), simple moving average (SMA), moving average convergence

divergence (MACD), and the top news headline associated with the ticker symbol and

date. A ticker is a unique abbreviation used to identify a company on the stock market.

RSI, or relative strength index, indicates to an investor if a stock is being overbought or

oversold. Usually if a stock is being overbought it results in a higher RSI value, and

signals a good selling period. The opposite is true for oversold stocks. Measuring RSI can

reveal a stock’s momentum which aids investors in predicting the magnitude and direction

that a stock’s price will follow.

SMA, or simple moving average, is the average price of a stock over a certain period of

time. In our case, this is the closing price. An increasing SMA value can be interpreted as

an upward trend for a stock signaling investors to buy, while the opposite is true for a

decreasing SMA value. EMA, or exponential moving average is similar to SMA in that it

tracks the price of a stock over a period of time, however, EMA places a greater weight on

more current data making it more useful for short-term trading strategies. MACD, or

moving average convergence divergence, uses long-term (26 days) and short-term (12

days) EMA values to better capture the trend of a stock’s price. As previously mentioned,

since EMA places a greater weight on more current data, this indicator can help introduce

a broader context of market data. Since SMA, EMA, and MACD span different periods of

time, using them in tandem can provide a more holistic trading strategy.

The indicator data was acquired through an EOD Historical Data API (EOD Historical Data

n.d.), and the headline data is provided by the News API (News API n.d.). The equations

for the technical indicator data can be found below. A default window size of 50 days was

used to calculate RSI, EMA, and SMA.

05 June 2023, 18th Economics & Finance Conference, London ISBN 978-80-7668-006-7, IISES

55

(1)

Each entry in our dataset corresponds to a business day for a given stock and

contains this stock’s technical indicator data and top news headline for the given

day. The news headline feature is preprocessed using FinBert (Z. Liu et al.

2020) to extract the corresponding sentiment score. We have included news

headlines in our dataset since context external to the technical data which is

provided by the sentiment analysis conducted on news headlines, in

combination with the self-attention benefits of the Transformer architecture

provides an advantage in stock trend prediction compared to conventional

RNNs.

The dataset consists of 3700 entries of the FAANG (Facebook, Amazon, Apple,

Netflix, Google) companies. The entries are drawn from actual stock data from a

time period of close to three years spanning from 3/18/2019 - 2/18/2022. As

mentioned above, the numerical data for each stock is from the EOD Historical

Data API, and the news headlines are extracted from the NewsAPI.

Normalization using mean and standard deviation has been seen to provide

performance improvement for stock trend prediction (K. Chen, Zhou, and Dai

2015). Therefore, we conduct a Z-Score normalization over all numerical fields

to prevent the different prices of each stock in our dataset from skewing our

results and to remain true to the idea of trend prediction rather than price

prediction.

3.2 Architecture Descriptions

Our model, StockFormer, is based on the Transformer architecture. Transformers,

introduced by the paper “Attention Is All You Need” (Vaswani et al. 2017), are sequence-

to-sequence models, that specialize in time-series analysis tasks using a concept called

self-attention. When dealing with sequential data, state-of-the-art RNNs often suffer from

mishandling long-term dependencies, a problem that the Transformer architecture

mitigates through the use of this self-attention. To be more specific, Transformers operate

by introducing this attention mechanism to the famous encoder-decoder array architecture

that is commonly used in sequence translation and processing tasks. Conventionally the

encoder would simply take in a sequence of data as input, but the Transformer’s attention

mechanism allows the model to encode the importance of certain keywords and

semantics that occur in a sentence. This then assists the decoder, which uses the

encoder’s output, by giving it more contextual information.

To conduct sentiment analysis on our news headline data, we use FinBert (Z. Liu et al.

2020). FinBert is the product of training Bert (Devlin et al. 2018), a multi-layer bidirectional

05 June 2023, 18th Economics & Finance Conference, London ISBN 978-80-7668-006-7, IISES

56

Transformer, on a financial corpus. Bert uses WordPiece (Wu et al. 2016) embeddings to

encode each token in the input sequence and masks 15% of the input tokens. This allows

the model to develop a more robust bidirectional self-attention representation of the input.

Training Bert on a financial corpus allows Finbert to gather sentiment scores from text with

a financial perspective in mind. FinBert provides sentiment information in the form of real

values that represent if the given text is positive, neutral, or negative. We use a pretrained

version of Finbert to perform sentiment analysis on top news headlines in our dataset.

For some time windows, we could not find direct RNN comparisons to our prediction task

that also used the same metric measurements. Therefore in this section below, we also

describe a baseline LSTM we created to conduct comparisons for such time windows.

This baseline shares the same sentiment analysis and technical data fusion approach with

our model architecture, which allows for an accurate comparison of our model’s

performance and allows us to create valuable trend comparisons between LSTM-based

models and StockFormer as time windows are increased.

3.2.1 Input and Output Commonalities

Our novel model, StockFormer, and the baseline LSTM that we describe below share the

same input format. If we are trying to predict the (n+1) day’s normalized opening price,

each model is given data on n days in the form of the features that we mentioned in the

Dataset Description and Analysis section. For reference, these ”raw” features include all

the normalized technical indicator data along with the sentiment analysis score outputted

by FinBert for each n day. Each model contains a Linear Layer for each n day to extract

raw embeddings from the raw feature data. These raw embeddings are then used

differently depending on the type of model. When it comes to the output, there is one

Linear Layer at the end of each model that takes as input the final latent output of each

model and outputs the final normalized opening price prediction for the (n+1) day. The

Linear Layers in each model follow the same formula. The output is found by multiplying

input elements by their respective weights. For example, given the input I and weights W,

both of size i, the output for a Linear Layer can be found by Equation 2:

∑ 𝑊𝑖𝐼𝑖
𝑖
𝑖=0 (2)

As stated before, these layers are often implemented at the beginning of models to find

intermediate embeddings by introducing nonlinearity and complexity, while also being

used at the end to produce the final output.

3.2.2 StockFormer

In this paper, the architecture we are introducing is called the StockFormer. For this

architecture, we employ the PyTorch nn.Transformer model as a backbone (Paszke et al.

2019). The extracted raw embeddings, which are described above, are first fed into the

positional encoder portion of our model in which positional embeddings are extracted and

then added to the raw embeddings to create the final input embeddings for each n day.

05 June 2023, 18th Economics & Finance Conference, London ISBN 978-80-7668-006-7, IISES

57

Since we are using a Transformer backbone, the n days’ final input embeddings are not

inputted sequentially, but instead in a parallel manner. This means that the position of

each day with respect to others needs to be directly encoded into the final input

embeddings and therefore the need to use a positional encoder arises. The positional

encoder we are using is based on the sinusoidal functions (Sin, Cos) mentioned in the

original Transformer paper (Vaswani et al. 2017). These functions were both used

because they are bounded and can together be represented by a linear function. Since

bounded linear functions are relatively easy for neural networks to learn, these attributes

make training more efficient and less intensive. Along with this, these functions can

innately capture the proximity between two positions. This can be seen by the fact that the

function Sin(x) has points closer in position to the function Sin(x+1) than those of Sin(x+2).

To be more specific, the positional embedding, of the kth token in a sequence can be

found by the following formula in Equation 3:

 (3)

Here, d is the dimension of the output positional embedding matrix (PE) which also

corresponds to the dimension of the input sequence. PE contains all the positional

embeddings for each token in the input sequence. In our case, each token in the input

sequence corresponds to a trading day. n is a user-defined variable that is set to 10,000

by default in the original Transformer paper (Vaswani et al. 2017). Finally, the variable i

falls in the range [0, d/2) and represents the different dimensions of the position

embedding matrix which we iterate through to create the positional embedding for k.

The final input embedding is found by adding the raw feature embeddings to the positional

embeddings for each day in our input sequence. These final input embeddings are then

passed into the encoder section of the Transformer backbone. In the original Transformer

paper, the encoder section consists of 6 identical layers. Each layer is comprised of a

multi-head attention mechanism followed by a fully connected feed-forward network. The

multi-head self-attention mechanism calculates the importance of each token to the other

tokens in the sequence. To create a more dynamic attention representation, multiple self-

attention functions are used in this mechanic.

We mentioned self-attention briefly before, but to be more specific, self-attention can be

described as using learnable parameters and dot product operations to query each token

in a sequence against the entire sequence to determine a corresponding reweighting

factor. This reweighting factor is then used on the sequence to derive an embedding for

the queried token with a greater context of its relations to the remaining tokens in the

sequence.

To conduct the self-attention function, first select a token to reweight the embedding for.

The chosen token is passed through a Linear Network to derive its query embedding,

while all the tokens in the sequence are passed through a separate Linear Network to

determine their key embeddings. Then conduct a dot product of the query embedding

05 June 2023, 18th Economics & Finance Conference, London ISBN 978-80-7668-006-7, IISES

58

against the key embeddings and perform a SoftMax operation on the result to derive the

final reweighting factor, which consists of one corresponding reweighting scalar for each

value embedding. Value embeddings are found by passing all the sequence tokens

through another Linear Network, similar to how key embeddings are found. Finally,

multiply the value embeddings of the sequence by their corresponding scalar values

contained in the reweighting factor and sum the results to derive the final reweighted

embedding of the token associated with the query. In this manner, by conducting self-

attention on our input sequence of n days, we can factor in the importance of each day in

a sequence to the others by reweighting their embeddings which will give us better context

when predicting the (n+1) day’s normalized opening price. Each previously mentioned

function in the encoder’s multi-head self-attention attention mechanism uses the following

formula in Equation 4:

(4)

Here, d is the dimension of the input. The aforementioned query, key, and value

embeddings are represented as matrices to parallelize the self-attention process

for all tokens in the sequence. Q is the query matrix, K is the key matrix, and V

is the value matrix. As a reminder, these matrices can be found by conducting

the dot product of their corresponding Linear Layer (weighted matrices) by the

input tokens. For example, Q is the result of conducting the dot product between

the query inputs and the weighted matrix associated with query inputs. The final

output of the model encoder, which is a feed-forward Linear Network that uses

these new attention embeddings as input, is a sequence of continuous

representations that are used by the decoder to extract the final intermediate

embedding corresponding to the (n+1) day’s opening price.

Similarly to the encoder, the decoder consists of 6 identical layers containing

similar elements. Each layer contains a multi-headed attention mechanism that

performs self-attention on the decoder’s input. In our case, the decoder’s input

consists of the encoder’s output along with the positionally encoded normalized

opening prices of the previous n days. The outputs of the self-attention

operations performed on both portions of the decoder’s input are then passed

into a fully connected feed-forward network which outputs a final shifted

intermediate representation of the normalized open prices for days [2, n+1]. As

mentioned in the Input and Output Commonalities subsection, this intermediate

representation is passed through a final Linear Layer whose output represents

the (n+1) day’s normalized opening price.

05 June 2023, 18th Economics & Finance Conference, London ISBN 978-80-7668-006-7, IISES

59

Figure 1: StockFormer WorkFlow with Exchangeable Baseline LSTM

Module

Source: Own Rendition of Model Architecture

The complete workflow of this model, beginning from initial feature latent

embedding creation to final Transformer output, can be seen in Figure 1.

3.2.3 LSTM Baseline

The model that we chose to be our baseline for time windows that did not have readily

available RNN models for comparison, was the LSTM. Our LSTM model uses the PyTorch

nn.LSTM as a backbone (Paszke et al. 2019). Since this is a recurrent neural network,

there is no need for the Positional Encoder as the raw embeddings for each n day are

inputted sequentially. In this model, the final hidden state is used as input for the final

Linear Layer which outputs the final normalized opening price prediction for the (n+1) day.

To get the best performance from our baseline LSTM, we made it bidirectional. This

meant that instead of information flowing from beginning to end, it also went from end to

beginning. Therefore this preservation of information from both the past and future can

help add complexity to the model and allow it to better represent the data. We also found

that the LSTM performed the best when hidden dimension values were set to 10 and

when we stacked two LSTMs together to create a double-layered bidirectional LSTM. The

workflow for this baseline model using the LSTM module can be seen in Figure 1 as well.

05 June 2023, 18th Economics & Finance Conference, London ISBN 978-80-7668-006-7, IISES

60

4 Experiment and Results Analysis

Since our problem statement is centered around using n days to predict the (n+1) day’s

opening price, we decided to structure our experiments in a format that varied the value of

n. Varying this so-called window of days used for prediction was done to try and compare

the different models’ abilities to capture long and short-term dependencies.

4.1 Metrics

We used four major metrics to measure the performance of each model. For loss

measurement, MSE loss was used due to the fact that predicting the (n+1) day’s open

price is a regression-based task. MSE can be measured by taking the average of the

difference between each data entry’s corresponding ground truth label and predicted

model output. The formula for MSE loss can be found below in Equation 5. For this and

the following formulas, N is the total amount of data points, x is the ground truth open

price data, and y is the predicted open price data.

(5)

Along with MSE Loss, R2 score was also used. R2 score is a metric that is specifically

made to measure the performance of regression models with a higher R2 score being

considered better. R2 score essentially tells you how well your model fits the train/test

data’s regression line by taking into account the residuals, which are the distances

between each predicted value and its corresponding ground truth value. The formula for

R2 is shown below in Equation 6:

(6)

The numerator of the summation represents the sum squared regression which is the sum

of the residuals squared. The denominator of the summation represents the total sum of

squares which squares the distance between the ground truth data and the mean of the

total ground truth data.

The next metric that we used was AUC score. Normally AUC measures the effectiveness

of classification models, but we augmented it to fit our regression task. The AUC score of

a classifier is equal to the probability that the classifier gives a higher score to a positive

example compared to a negative example. Therefore a regression AUC score in the

context of our problem could be obtained in a similar fashion; if we take any two ground

truth observations a and b such that a’s true open price is greater than b’s true open price,

then the regression AUC score is equal to the probability that our model actually ranks a’s

predicted open price higher than b’s predicted open price. In this case, a higher AUC

score would still be more desirable. Therefore for the number of pairs P described above,

containing a and b, the AUC score can be found using the formula in Equation 7 below:

05 June 2023, 18th Economics & Finance Conference, London ISBN 978-80-7668-006-7, IISES

61

(7)

The final metric we used for measurement was directional accuracy, which can be seen in

Equation 8. This measure is often used by regression-based stock prediction models as a

convenient way to measure their accuracy. In our context, the directional accuracy of a

model can be found by checking if the (n+1) day’s ground truth open price increases or

decreases in relation to the n day’s ground truth open price. If the (n+1) day’s ground truth

price and predicted price both increase or both decrease in relation to the n day’s ground

truth open price, then the directional accuracy increases. The directional accuracy also

increases if both the (n+1) days open price ground truth and prediction are equal to the n

day’s ground truth open price.

(8)

It is important to note that the LSTM models for which we draw comparisons as baselines

do not measure performance using every metric that we use to measure the performance

of our StockFormer model. Therefore our experimental analysis is unique for each LSTM

model and its associated time window. However, even for baselines that contained

missing metrics we could not compare to, we still chose to display all StockFormer metric

measurements as this reveals valuable trends in performance.

4.2 Best Run Parameters

Some training parameters for the StockFormer were consistent amongst all our runs. For

each time window, the model was trained for 50 epochs. Along with this, we used the

Adam optimizer for all runs due to its ability to converge quickly. Finally, a learning rate of

0.0001 consistently led to the best convergence across all experiments.

4.3 Best Model Parameters

For our StockFormer model, the best performance across all-time windows came when

we had 6 encoder and decoder layers stacked on top of each other. The hidden

dimension of each layer’s input and output was set to 80 as well. We also incorporated a

dropout value of 0.1 which we believe helped the model generalize better. Finally, the

number of attention heads that we found to be most beneficial was 8. Each attention head

has its own set of weights that are used when self-attention is calculated by the

Transformer backbone. Intuitively, it is better to have multiple attention heads as this gives

the model more opportunity to learn different attention representations that can be useful

when conducting the final prediction.

05 June 2023, 18th Economics & Finance Conference, London ISBN 978-80-7668-006-7, IISES

62

4.4 Experimental Results

As a reminder, this baseline LSTM was created as an evaluation method for time windows

that we could not find comparable studies on. For a lag period of n=4 days, a difference of

3.6% directional accuracy reveals that our model performs better than the baseline LSTM

on short time ranges. As we increase the lag period to n=24 days, we can see that our

Figure 2: Baseline LSTM Performance Comparison

Source: Own Data Collected from Experiments

model reaches an AUC score of 0.9727 and directional accuracy of 0.7184 as it continues

to outperform our baseline LSTM while the differences in loss remain minimal. The full

comparison of our model’s performance, in blue, with respect to our baseline LSTM’s

performance, in red, can be seen in Figure 2.

05 June 2023, 18th Economics & Finance Conference, London ISBN 978-80-7668-006-7, IISES

63

Table 1: Related Model Performance Comparison

 StockFormer Bi-Dir LSTM LSTM-News GRU-News S_MEMDAM_LSTM

Lag

Period
MSE

Loss
R2 Directional

Accuracy
MSE Loss R2 Directional

Accuracy
MSE

Loss
R2 Directional

Accuracy
MSE

Loss
R2 Directional

Accuracy
MSE Loss R2 Directional

Accuracy
n=9 0.004659 0.9956 0.5766 0.0009356 0.994 – – – – – – – – – –

n=14 0.003411 0.9968 0.7027 – – – 4.8031 0.979 0.60 5.399 0.967 0.59 – – –
n=29 0.1071 0.9219 0.8919 – – – – – – – – – 10.2178296132 0.977388 0.7056

Source: Own Data Collected from Experiments

This trend of outperforming RNNs as the lag period increases is visible even as we compare it to

the models mentioned in our Related Works Section. We present our model’s performance to these

models in Table 1. The Bi-Dir LSTM that we use to conduct a comparison for a lag period of n=9

days did not contain an accuracy measurement in its paper. However, we can see that our model’s

performance stayed similar as we increased the lag period from n=4 to n=9 days which is the first

indication of our model’s ability to better capture long-term dependencies. As we move to a lag

period of n=14 days, we see that our model completely outperforms the comparison RNNS. Again,

cannot compare loss measurements here because the LSTM-News and GRU-News models were

not trained on normalized data. That being said, the increase in directional accuracy to 0.7027 is

enough to support a positive correlation between increased window size and our model’s

performance. Finally, the greatest performance in directional accuracy of our model can be found if

the lag period is set to n=29 days. The model we are comparing here is the S_EMDAM_LSTM

model mentioned earlier. Our model was able to reach 0.8919 in directional accuracy compared to

0.7056 for S_EMDAM_LSTM. This is the largest difference in accuracy that we found.

Figure 3: Accuracy Trend Comparison

Source: Own Data Collected from Experiments

05 June 2023, 18th Economics & Finance Conference, London ISBN 978-80-7668-006-7, IISES

64

Overall, is clear that our model does not perform as well for a time window of 5 days

compared to the rest. We believe this is attributed to the fact that a lag period of 4 days is

not long enough for our Transformer based model’s ability to better extract long-term

dependencies to become an advantage. However, it is important to note that our model’s

performance improved overall as the sequence length increased, even when compared to

RNN baselines that also incorporate sentiment analysis. This is evident when comparing

the directional accuracy trends of our StockFormer and the aforementioned RNN

baselines which can be seen in Figure 3. We believe these results were caused by the

StockFormer being able to better keep track of long-range dependencies using self-

attention due to its Transformer backbone. Even if we were unable to compare all metrics

to each baseline, identifying this trend is useful as it supports the narrative that

Transformers can capture long-term dependencies better than RNNs in the financial

domain. As we stated before, longer stock prediction time windows with Transformers

have not been explored as much to our knowledge, so this body of work serves as an

incentive to continue this area of research further.

4.5 Comparison to Recent Transformer Based Stock Prediction Model

To complete the reporting of our results, we figured it was appropriate to mention a recent

paper, that used a Transformer as a backbone for its initial feature extraction in order to

conduct stock trend prediction. While this paper is also an example of a recent

Transformer based stock prediction paper that does not explore longer time windows, it

can still serve as an important point of reference for the short-term capabilities of our

model. The authors of this paper decided to combine a Transformer and LSTM in order to

create a model that would conduct stock prediction using financial and news over a 5 day

window (Zhang et al. 2022). This model, called TEANet, first extracts intermediate

features from its technical stock and tweet text data using a Transformer encoder-based

architecture. It then uses these intermediate features as input to its LSTM to extract

temporal features which represent the fusion of stock and tweet data. This fusion is then

used as input into the temporal attention portion of the model. When trained on a dataset

similar to ours that used Twitter tweets rather than news headlines, this model achieved

an accuracy of 65.16% over a 5 day period. As shown in Figure 2, our StockFormer

managed an accuracy of 60.36% over a similar period of time (n+1=5 day). We believe

this performance discrepancy comes from the increased complexity that TEANet offers by

using an LSTM, which we have shown performs similar to our Transformer based

architecture over this smaller 5 day period. While it may be useful to incorporate an RNN

in a similar manner into our StockFormer architecture, we would also like to see how

TEANet would perform on longer time windows, such as n=14 days and beyond. We have

seen that an LSTM’s performance can degrade during this time period, so it would be

interesting to see if an LSTM inclusive architecture would be affected by this trend as well.

5 Conclusion

Based on the results of our experiments, the combination of sentiment analysis and

Transformers is a viable approach for stock trend prediction. Testing our Transformer

implementation on varying time windows displays the model’s ability to better capture long-

05 June 2023, 18th Economics & Finance Conference, London ISBN 978-80-7668-006-7, IISES

65

term dependencies than comparable RNNs. This better performance over longer time

windows also indicates the model’s usefulness for long-term based trading strategies. In the

future, we aim to further develop this concept through a few modifications. Our longest time

window in this paper consists of 6 weeks, so testing time windows of greater lengths could

indicate even better comparative performance to RNN models. Along with this, expanding

the number of tickers tested and incorporating new technical indicator features for global

market data may also increase the performance of the model. An alternate task we could try

is switching from a regression problem to a binary classification problem, by predicting

strictly if a given stock’s price increases or decreases. This type of problem formulation

allows us to diversify the metrics available for evaluating the model as well. More technical

changes also include experimenting with different positional encoding functions. Currently,

the model uses a sinusoidal function for this purpose, but it is possible a more optimal

function or even a trained time-series positional encoder exists that can be better tuned for

stock time-series prediction. Finally, the raw encoding function can be made more

sophisticated as well. Instead of using a single linear layer for each preceding day, we can

perhaps incorporate an RNN or a more advanced Neural Network to extract such

embeddings to add complexity to our model.

References

ALTHELAYA, K. A., EL-ALFY, E.-S. M. AND MOHAMMED, S. (2018) ‘Evaluation of bidirectional LSTM for

short-and long-term stock market prediction’, 2018 9th International Conference on Information and

Communication Systems (ICICS). doi: 10.1109/iacs.2018.8355458.

DENG, S. ET AL. (2011) ‘Combining Technical Analysis with Sentiment Analysis for Stock Price Prediction’,

in 2011 IEEE Ninth International Conference on Dependable, Autonomic and Secure Computing, pp.

800–807. doi: 10.1109/DASC.2011.138.

DEVLIN, J. ET AL. (2018) ‘Bert: Pre-training of deep bidirectional transformers for language understanding’,

arXiv preprint arXiv:1810. 04805.

DING, A., QIAO, Y. AND BAGHERZADEH, N. (2023) ‘BNN an Ideal Architecture for Acceleration With

Resistive in Memory Computation’, IEEE Transactions on Emerging Topics in Computing. IEEE.

EOD Historical Data(no date). Available at: https://eodhistoricaldata.com/.

GRAVES, A. AND SCHMIDHUBER, J. (2005) ‘Framewise phoneme classification with bidirectional LSTM

networks’, in Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.

IEEE, pp. 2047–2052.

HOCHREITER, S. AND SCHMIDHUBER, J. (1997) ‘Long short-term memory’, Neural Computation, 9(8),

pp. 1735–1780. doi: 10.1162/neco.1997.9.8.1735.

CHEN, K., ZHOU, Y. AND DAI, F. (2015) ‘A LSTM-based method for stock returns prediction: A case study

of China stock market’, in 2015 IEEE International Conference on Big Data (Big Data), pp. 2823–

2824. doi: 10.1109/BigData.2015.7364089.

CHO, K. ET AL. (2014) ‘Learning phrase representations using RNN encoder-decoder for statistical

machine translation’, arXiv preprint arXiv:1406. 1078.

05 June 2023, 18th Economics & Finance Conference, London ISBN 978-80-7668-006-7, IISES

66

JIN, Z., YANG, Y. AND LIU, Y. (2020) ‘Stock closing price prediction based on sentiment analysis and

LSTM’, Neural Computing and Applications. Springer, 32(13), pp. 9713–9729.

LAWRENCE, R. (1997) ‘Using neural networks to forecast stock market prices’, University of Manitoba,

333, pp. 2006–2013.

LECUN, Y., BENGIO, Y. AND HINTON, G. (2015) ‘Deep learning’, Nature, 521(7553), pp. 436–444. doi:

10.1038/nature14539.

LIU, Z. ET AL. (2020) ‘Finbert: A pre-trained financial language representation model for financial text

mining’, Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. doi:

10.24963/ijcai.2020/622.

News API (no date). Available at: https://newsapi.org/.

PASZKE, A. ET AL. (2019) ‘PyTorch: An Imperative Style, High-Performance Deep Learning Library’, in

Wallach, H. et al. (eds) Advances in Neural Information Processing Systems 32. Curran Associates,

Inc., pp. 8024–8035. Available at: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-

high-performance-deep-learning-library.pdf.

QIAO, Y., ALNEMARI, M. AND BAGHERZADEH, N. (2022) ‘A Two-Stage Efficient 3-D CNN Framework for

EEG Based Emotion Recognition’, in 2022 IEEE International Conference on Industrial Technology

(ICIT). IEEE, pp. 1–8.

SHAHI, T. B. ET AL. (2020) ‘Stock price forecasting with Deep Learning: A Comparative Study’,

Mathematics, 8(9), p. 1441. doi: 10.3390/math8091441.

VASWANI, A. ET AL. (2017) ‘Attention is All you Need’, in Guyon, I. et al. (eds) Advances in Neural

Information Processing Systems. Curran Associates, Inc. Available at:

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

WU, Y. ET AL. (2016) ‘Google’s neural machine translation system: Bridging the gap between human and

machine translation’, arXiv preprint arXiv:1609. 08144.

ZHANG, Q. ET AL. (2022) ‘Transformer-based attention network for stock movement prediction’, Expert

Systems with Applications, 202, p. 117239. doi: 10.1016/j.eswa.2022.117239.

05 June 2023, 18th Economics & Finance Conference, London ISBN 978-80-7668-006-7, IISES

67

