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1 Introduction 

The classic portfolio analysis, proposed in (Markowitz, 1952) and developed by Sharpe (1963) into 

Capital Asset Pricing Model, is based on the assumption that assets returns are normally 

distributed. This assumption is sometimes made only implicitly. For example, in the Markowitz 

approach it is assumed that investor take into account two criteria: potential profitability, measured 

by expected value, and risk, measured by variance. These two characteristics would provide a full 

description of distribution of returns, if this distribution was Gaussian. In other cases usually more 

characteristics are needed. 

It is also well-known from many empirical studies, that the true distribution of assets returns is not 

Gaussian. Moreover, prices usually do not follow continuous changes. As it was indicated for 

example in (Cont, Tankov, 2006), (Jondeau et.al., 2007) or (Malevergne, Sornette, 2006), it is a 

stylized fact in the finance, that asset returns are not normally distributed (usually their distributions 

have excessive kurtosis and skewness) and that there are discontinuities (“jumps”) in processes of 

assets prices. A sound theory of portfolio analysis should take these facts into account. 

In the paper we analyze the portfolio problem in the situation when stocks prices follow jump-

diffusion model with the tails of jumps obeying power-law. We consider a portfolio problem with two 

risk criteria: risk in the situation of normal market circumstances and the risk of jumps. We propose 

a method for numerical computing the former risk using Fast Fourier Transform (FFT). 

The article is organized as follows. After this short introduction, the brief introduction of jump-

diffusion models of asset prices is presented in the section 2. This section contains main 

mathematical notions connected with this class of models, such as Levy processes, jump measure 

and Lévy-Itô decomposition. In the third section we present the proposition for augmenting classical 

portfolio analysis for a criterion connected with the risk of sudden jumps in asset prices. In the 

section fourth we propose a specific example of jump-diffusion model with the distribution of jumps 

that obeys power law (two-sided Pareto distribution). This section contains also details concerning 

numerical computations of the risk criterion. The section five contains empirical example for the 

portfolios of stocks from Polish market quoted on the Warsaw Stock Exchange. Section six 

concludes. 

2 Jump-diffusion models of asset prices 

Lévy process 𝐿 is a stochastic cadlag1 process which starts at zero and fulfils the following 

conditions. 

 Its increments are independent and stationary, i.e. for any 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛the variables 

𝐿𝑡2
− 𝐿𝑡1

, 𝐿𝑡3
− 𝐿𝑡2

 ..., 𝐿𝑡𝑛
− 𝐿𝑡𝑛−1

are independent and the distribution of  𝐿𝑡+ℎ − 𝐿𝑡 depends 

only on ℎ and not on 𝑡. 

                                                           
1 That is its trajectories are right-continuous and have left limits (fr. - continue à droite, limite à gauche, see for 

example [Schryaev, 1999]). 
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 The process is stochastically continuous, that is ∀𝜀 > 0 𝑙𝑖𝑚
ℎ→0

(|𝐿𝑡+ℎ − 𝐿𝑡| ≥ 𝜀) = 0, which 

means that the jumps of the process are random – the probability that the process jumps at 

any given moment 𝑡 equals 0. 

The Lévy processes are closely connected with infinitely divisible distributions, i.e. with distributions 

that can be represented as a sum of 𝑛 identically distributed random variables (for any 𝑛). The 

infinitely divisible distributions are the broadest class of distributions that can appear in limit 

theorems concerning sums of independent variables1. It is true that the distribution of Lévy process 

at any moment of time is infinitely divisible2.  On the other hand – for any infinitely divisible 

distribution 𝑓 there exists a Lévy process 𝐿 such that 𝐿1 ∼ 𝑓. Thus the Lévy processes are the 

widest class of processes which can be interpreted as a result of many small and independent 

random increments. 

2.1 Lévy-Khinchin representation 

According to Lévy-Khnitchin theorem (see [Appelbaum, 2004], [Cont, Tankov, 2004] or [Kyprianou, 

2006]) any Lévy process 𝐿 is completely described by its characteristic exponent, that is by the 

logarithm of the characteristic function of 𝐿1. We have 

𝐸[𝑒𝑖𝑢𝐿𝑡] = 𝑒𝑡𝜓(𝑢),           (1) 

where the function 𝜓 (characteristic exponent) is given by 

𝜓(𝑢) = −
1

2
𝜎2𝑢2 + 𝑖𝜇𝑢 + ∫ (𝑒𝑖𝑢𝑥 − 1 − 𝑖𝑢𝑥1|𝑥|≤1)𝑑𝑣(𝑥)

𝑅
,     (2) 

where 𝜎2 ∈ 𝑅+, 𝜇 ∈ 𝑅, and 𝑣 is a measure on 𝑅 (so called Lévy measure) which fulfils  

 ∫ 𝑥2𝑑𝑣(𝑥)
|𝑥|≤1

< ∞ and 𝑣({𝑥 ∈ 𝑅: |𝑥| > 1}) < ∞.     (3) 

The measure 𝑣 describes jumps of a process – the value 𝑣(𝑅) is the number of jumps in the unit of 

time. The value 𝑣([𝑐, 𝑑]) denotes relative frequency of jumps which have a size between 𝑐 and 𝑑. 

If the measure 𝑣 fulfils 

∫ |𝑥|
|𝑥|≤1

𝑑𝑣(𝑥) < ∞,         (4) 

then  (2) can be reformulated as 

𝜓(𝑢) = −
1

2
𝜎2𝑢2 + 𝑖𝜇𝑢 + ∫ (𝑒𝑖𝑢𝑥 − 1)𝑑𝑣(𝑥)

𝑅
      (5) 

and 𝜇 denotes the drift of the process. 

2.2 Lévy-Itô decomposition 

According to Lévy-Itô theorem any Lévy process can be decomposed into a sum of a linear trend, 

a Wiener process (continuous, with Gaussian distribution), a Poisson process of large jumps and 

a completely discontinuous martingale: 

                                                           
1 See (Feller, 1967), chapter XVII. 
2 See for example (Sato, 1999). 
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d

tttt MPWtL   ,         (6)
 

where 𝑊 is a standard Wiener process, 𝑃 is a compound Poisson process with jumps in (−∞, 1] ∪

[1, +∞) and 𝑀𝑑 is a completely discontinuous martingale with jumps in (−1, 1). If the  Lévy  measure 

fulfils (4), then we can rewrite (6) as 

 𝐿𝑡 = 𝜇𝑡 + 𝜎𝑊𝑡 + ∑ Δ𝐿𝑡𝑠≤𝑡 ,        (7) 

where Δ𝐿𝑡 = 𝐿𝑡 − lim
𝑠→𝑡−

𝐿𝑠. The equations (6) and (7) describe the structure of Lévy processes. 

According to (6) the process can be decomposed into the sum of continuous Gaussian process 

and discontinuous jumps. The parameters 𝜇 and 𝜎 describe trend and volatility of the continuous 

part of the process. 

2.3 Jump-diffusion models 

We assume that prices of all considered assets are driven by Lévy processes. The price of the 

asset 𝑖 at the moment 𝑡 is given by the following stochastic differential equation1: 

 𝑑𝑆𝑡
𝑖 = 𝑆𝑡−

𝑖 𝑑𝐿𝑡
𝑖 .          (8) 

The solution is a stochastic exponent of the process 𝐿𝑖 and logarithmic returns of the assets have 

infinitely-divisible distribution. Each process driving the prices is described by its characteristic triple 

(𝜇𝑖 , 𝜎𝑖, 𝑣𝑖), where 𝜇𝑖 and 𝜎𝑖 are, respectively, trend and volatility parameters of the continuous part 

of the process driving prices of the 𝑖-th asset and 𝑣𝑖 is its Lévy measure. The continuous parts of 

the driving processes can be correlated. Let 𝜎𝑖𝑗 denote the covariance between Gaussian parts of 

the processes 𝐿𝑖 and 𝐿𝑗. Of course 𝜎𝑖𝑖 = 𝜎𝑖
2. 

Models like (8) are usually called jump-diffusion models. Although in the literature this term 

denotes most often models with finite measure of jumps (𝑣(𝑅) < ∞), here we understand this term 

more broadly. As examples of such models we can indicate Merton model (see [Merton, 1976]) or 

Kou model (see [Kou, 2002]). In jump-diffusion models the returns of asset are described by three 

parameters: mean 𝜇, variance of Gaussian part 𝜎2 and Lévy measure 𝑣. This kind of models apply 

also if distributions of returns are α-stable, have Student distribution or belong to generalized 

hyperbolic family of distributions (these assumptions are frequent in financial literature and models 

based on them fit quite well to data, see for example [Mandelbrot, 1997] or [Mandelbrot, Hudson, 

2005]). 

To fully specify the model one has also to describe the interdependences between jumps of 

various assets. The most general way to do this is to specify a Lévy measure of jump vector. The 

Lévy measure 𝑣 is then a measure on 𝑅𝑛 (where 𝑛 is the number of assets), which can be 

interpreted as follows: for any 𝐴 ⊂ 𝑅𝑛 such that 0 ∉ 𝐴 the value 𝑣(𝐴) is the expected number of 

jumps (in the unit of time) of all assets, such that (Δ𝐿𝑡
1, Δ𝐿𝑡

2, … , Δ𝐿𝑡
𝑛) ∈ 𝐴. However this method of 

describing common jumps is not effective, because one has to specify the measure on 𝑛-

dimensional space. Kallsen and Tankov (2006) proposed a method based on Lévy copula 

functions, which describes the dependences in tails of jumps distributions of various assets. There 

                                                           
1  Alternatively, one can assume that the assets’ prices are given as ordinary exponents of Lévy processes 𝑆𝑡

𝑖 = 𝑆0
𝑖 𝑒𝐿𝑡

𝑖
. 

As it was shown in (Kallsen, 2000), both approaches are equivalent. 
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is also another method which assumes that one can divide jumps in returns into idiosyncratic jumps 

(characteristic for given asset) and market jumps, which affect the whole market. The process 𝐿𝑖, 

governing the prices of asset 𝑖, is then defined as 

 𝐿𝑡
𝑖 = 𝜇𝑖𝑡 + 𝜎𝑖𝑊𝑡 + 𝑈𝑡

𝑖 + 𝛾𝑖𝑈𝑡
0,        (9) 

where 𝑈𝑖 is the process of jumps of the asset 𝑖, 𝑈0 is the process of market jumps, and the 

parameter 𝛾𝑖 is describes how the market jumps affect the prices of the given asset. 

 The model (9) can be easily augmented allowing for the existence of jumps characteristic 

for specific sector or market segments. The driving process is then given by the following equation: 

  𝐿𝑡
𝑖 = 𝜇𝑖𝑡 + 𝜎𝑖𝑊𝑡 + 𝑈𝑡

𝑖 + 𝛾𝑖𝑈𝑡
0 + ∑ 𝛿𝑖𝑘𝑈𝑆

𝑘1𝑖∈𝐴𝑘

𝐾
𝑘=1 ,     (10) 

where 𝑈𝑆
𝑘 is the process describing the jumps in the sector 𝑘, 𝛿𝑖𝑘 is the parameter that describes 

how jumps in the sector 𝑘 affect the prices of the asset 𝑖 and 𝐴𝑘 is the set of indexes of assets in 

the sector 𝑘. Alternatively, one can assume that there are not any jumps characteristic for individual 

assets and all discontinuities are due to market jumps. The model is then given by the equation 

  𝐿𝑡
𝑖 = 𝜇𝑖𝑡 + 𝜎𝑖𝑊𝑡 + 𝛾𝑖𝑈𝑡

0 = 𝜇𝑖𝑡 + 𝜎𝑖𝑊𝑡 + ∑ 𝛾𝑖𝐶𝑡
𝑁𝑡
𝑗=1 ,     (11) 

where 𝑁 is a Poisson process and 𝐶𝑡 are independent and identically distributed random variables 

that describe the size of market jumps. If we assume that 𝐶𝑡 are normally distributed, we obtain 

multidimensional version of classical Merton model. 

3 Risk of jump as a criterion in portfolio analysis 

We consider a portfolio of 𝑛 assets. By 𝛼1, 𝛼2, …, 𝛼𝑛 we denote the proportions of the wealth 

invested in consecutive assets. Of course, ∑ 𝛼𝑖
𝑛
𝑖=1 = 1. The structure of the portfolio is thus given 

by the vector 𝛼 = (𝛼1, 𝛼2, … , 𝛼𝑛)𝑇. We assume that there are no transaction costs and the investor 

is able to manage the portfolio, by buying and selling assets, to maintain the assumed structure. 

Let us denote the value of the portfolio (or the wealth of the investor) at the moment 𝑡 by 𝑉𝑡. It 

follows from the eqn. (8) that the value process is given by the stochastic differential equation 

 𝑑𝑉𝑡 = 𝑉𝑡−𝑑𝐿𝑡
𝛼,           (12) 

where 𝐿𝑡
𝛼 = 𝐿𝑡

1 + ⋯ + 𝐿𝑡
𝑛. The process 𝐿𝛼 is also a Lévy process with the variation parameter of the 

Gaussian part of the process equal to 

 𝜎𝛼
2 = ∑ 𝛼𝑖𝛼𝑗𝜎𝑖𝑗

𝑛
𝑖,𝑗=1 .         (13) 

The Lévy measure of the value process is given by 

 𝜈𝛼(𝐴) = 𝜈({(𝑥1, … , 𝑥𝑛) ∈ 𝑅𝑛: 𝛼1𝑥1 + ⋯ + 𝛼𝑛𝑥𝑛 ∈ 𝐴}).    (14) 

If the measure 𝜈 is absolutely continuous and has a density function 𝑓, then the measure 𝜈𝛼 also 

has a density function 𝑓𝛼, which can be calculated by integration: 

 𝑓𝛼(𝑥) =
1

𝛼𝑛
∫ ∫ … ∫ 𝑓 (𝑥1, … , 𝑥𝑛−1,

1

𝛼𝑛
𝑥 −

𝛼1

𝛼𝑛
𝑥1 − ⋯ −

𝛼𝑛−1

𝛼𝑛
𝑥1) 𝑑𝑥1

+∞

−∞
𝑑𝑥2

+∞

−∞
… 𝑑𝑥𝑛−1

+∞

−∞
.  (15) 

 Let us define some function 𝑈: 𝑅 → 𝑅+ which serves as a measure of “disutility” of jumps. 

We can define the criterion of jumps’ risk as follows: 

 𝐾3(𝛼) = ∫ 𝑈(𝑥)𝑑𝜈𝛼(𝑥)
+∞

−∞
.        (16) 
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Accounting for classical criteria in the portfolio analysis, we obtain a three-criterial optimization 

problem with the following objectives: 

1. Maximize expected return of a portfolio 

 max
𝛼

 𝐾1(𝛼) = 𝛼 ∙ 𝜇 ,         (17) 

2. minimize variance of the return of a portfolio 

 min
𝛼

𝐾2(𝛼) = 𝜎𝛼
2,         (18) 

where 𝜎𝛼
2 is given by (13), and 

3. minimize the risk of jumps, where the jumps’ risk measure is given by the eqn. (16). 

As in other multicriterial problems, we should focus on efficient solutions, i.e. the portfolios for 

which it is impossible to improve any criterion without worsening others. Such solutions can be 

obtained for example by solving the following optimization problem: 

 max
𝛼

𝐾1(𝛼) − 𝜆2𝐾2(𝛼) − 𝜆3𝐾3(𝛼),       (19) 

where 𝜆2, 𝜆3 > 0 are coefficients that describe investor’s risk aversion concerning, respectively, 

“normal” market circumstances and jumps. However solving the problem (19) can be 

computationally difficult, because in order to derive the measure 𝜈𝛼, one has to perform 

multidimensional integration, as it is given in the eqn. (15). The problem is much simpler in the 

setup with market jumps. 

In the model with market jumps, given by the eqn. (9), the process that drives the value of 

the portfolio can be expressed as follows: 

 𝐿𝑡
𝛼 = ∑ 𝛼𝑖𝜇𝑖

𝑛
𝑖=1 𝑡 + ∑ 𝛼𝑖𝑊𝑡

𝑖𝑛
𝑖=1 + 𝑈𝑡

𝛼,       (20) 

where the jump process of the portfolio value is defined as 

 𝑈𝑡
𝛼 = (∑ 𝛼𝑖𝛾𝑖

𝑛
𝑖=1 )𝑈𝑡

0 + ∑ 𝛼𝑖𝑈𝑡
𝑖𝑛

𝑖=1 = ∑ 𝛼𝑖𝑈𝑡
𝑖𝑛

𝑖=0  ,     (21) 

where 

 𝛼0 = ∑ 𝛼𝑖𝛾𝑖
𝑛
𝑖=1  .         (22) 

It can be shown, that the Lévy measure of the portfolio jumps process is given by 

 𝑑𝜈𝛼(𝑥) = ∑
1

𝛼𝑖
𝑑𝜈𝑖 (

𝑥

𝛼𝑖
) 1𝛼𝑖>0

𝑛
𝑖=0 .       (23) 

4 Tempered stable tails and computations using FFT 

We assume that the jump process of each asset (as well as the process of market jumps) has finite 

intensity. For each asset the jumps occur independently – i.e. the moments of jumps for different 

assets form Poisson process with intensity 𝜈𝑖(𝑅). This number is also the expected number of 

jumps of asset 𝑖 in the unit of time. We assume that jumps sizes follow the two-sided Pareto 

distribution, i.e. the densities of positive and negative jumps are given respectively by 

 𝑓𝑖
1(𝑥) = 𝐶𝑖

1 (
ℎ𝑖

1

𝑥
)

𝛽𝑖
1

  for 𝑥 > ℎ𝑖
1 > 0       (24) 
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and 

 𝑓𝑖
2(𝑥) = 𝐶𝑖

2 (−
ℎ𝑖

2

𝑥
)

𝛽𝑖
2

  for 𝑥 < −ℎ𝑖
2 < 0,      (25) 

where 𝐶𝑖
1, 𝐶𝑖

2 are normalizing constants and 𝛽𝑖
1, 𝛽𝑖

2 are indexes characterizing the decay in tails of 

the distributions. We assume that positive and negative jumps are greater than some critical values: 

ℎ𝑖
1 and  ℎ𝑖

2, respectively. The size of jumps obeys power law, which proved to be valid in many 

circumstances concerning financial markets and extreme events (see for example [Malevergne, 

Sornette, 2006] or [Rachev et.al., 2011]). 

 We can define the jump risk of the portfolio as in the previous sections. However there are 

some problems with the criterion 𝐾3(𝛼). The expected number of jumps of portfolio in the unit of 

time is equal to 

 𝜈𝛼(𝑅) = ∑ 𝜈𝑖(𝑅)1𝛼𝑖>0
𝑛
𝑖=0         (26) 

and 𝐾3(𝛼) as a function of 𝛼 is discontinuous when 𝛼𝑖 → 0 for some 𝑖. To avoid this problem we 

modify the third criterion. Let 

 𝜈�̃�(𝑑𝑥) = 𝜈𝑖(𝑑𝑥)/𝜈𝑖(𝑅)         (27) 

be the distribution of jumps sizes for the asset 𝑖. The distribution of jumps of the process 𝛼𝑖𝑈𝑖 is 

given by the measure 𝜈�̃� (
𝑑𝑥

𝛼𝑖
) /𝛼𝑖. Define 𝜈�̃� as the convolution of these measures: 

 𝜈�̃�(𝑑𝑥) =
1

𝛼0⋯𝛼𝑛
𝜈0̃(𝑑𝑥/𝛼0) ∗ ⋯ ∗ 𝜈�̃�(𝑑𝑥/𝛼𝑛).      (28) 

The convulsion describes the distribution of the sum of variables, thus 𝜈�̃� can be interpreted as the 

average size of a jump in the value process. We modify this measure to take into account intensities 

of jumps in various components of the portfolio to obtain the following measure: 

 𝜂�̃�(𝑑𝑥) = (∑ 𝛼𝑖𝜈𝑖(𝑅)𝑛
𝑖=0 )𝜈�̃�(𝑑𝑥).       (29) 

The risk of jumps criterion is now defined as 

 𝐾3̃(𝛼) = ∫ 𝑈(𝑥)𝜂�̃�(𝑑𝑥)
+∞

−∞
.        (30) 

 The advantage of the new criterion is that the measure 𝜈�̃�(𝑑𝑥) can be relatively easy 

computed numerically. If 𝜙𝑗(𝑢) is the Fourier transform of the measure 𝜈�̃�: 

 𝜙𝑗(𝑢) = ∫ 𝑒𝑖𝑢𝑥𝜈�̃�(𝑑𝑥)
+∞

−∞
,        (31) 

then the Fourier transform of the measure 𝜈�̃�(𝑑𝑥) is given by 

 𝜙𝛼(𝑢) = ∫ 𝑒𝑖𝑢𝑥𝜈�̃�(𝑑𝑥)
+∞

−∞
= 𝜙0(𝛼0𝑢)𝜙1(𝛼1𝑢) ⋯ 𝜙𝑛(𝛼𝑛𝑢).    (32) 

The measure 𝜈�̃� can be computed numerically as an inverse Fourier transform of the function 𝜙𝛼. 

The calculation can be performed effectively with the usage of Fast Fourier Transform (FFT) 

algorithm.  

 If the jumps sizes are given by two-sided Pareto distribution, as it was assumed by eqn. (24) 

and (25), the Fourier transform of each measure is given by 
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 𝜙𝑗(𝑢) = 𝐶𝑗(𝛽𝑗
1 + 1)𝐶𝑗

1(−𝑖𝑢ℎ𝑗
1)

βj
1+1

Γ(−𝛽𝑗
1 − 1, −𝑖𝑢ℎ𝑗

1) + 

+(𝛽𝑗
2+1)𝐶𝑗

2(−𝑖𝑢ℎ𝑗
2)

βj
2+1

Γ(−𝛽𝑗
2 − 1, 𝑖𝑢ℎ𝑗

2),  (33) 

where 𝐶𝑗 is a normalizing constant and Γ(𝑎, 𝑥) is an incomplete gamma functions, defined as1 

 Γ(𝑎, 𝑥) = ∫ 𝑡𝑎−1𝑒−𝑡𝑑𝑡
+∞

𝑥
.        (34) 

5 Empirical example – portfolios of shares from Polish stock exchange 

We have performed an empirical analysis concerning computations of jump risk criterion for efficient 

portfolios build with the stocks quoted in the Polish Stock Market in Warsaw. We analyzed portfolios 

build with thirty biggest companies in the Warsaw Stock Exchange, which form the index WIG30 

(the index of biggest and most liquid shares in the market). The calculations were based on intraday 

observations of the stocks in the period from 12th May till 14th October 2016. In the estimations 5th 

minutes returns were used. 

In order to estimate parameters of distributions we had to identify jumps in the sample. We used a 

procedure proposed in (Andersen et.al. 2010) and (Ané, Métais, 2010). For each trading day we 

have performed test for the presence of jumps, based on the difference between realized volatility 

and bi-power variation. The test statistic is 

 𝐵𝑁𝑆𝑚 =
𝐵𝑉𝑚√𝑁

√Ωm
(ln 𝑅𝑉𝑚 − ln 𝐵𝑉𝑚 ),       (35) 

where 𝑅𝑉𝑚 is the realized volatility in the day 𝑚 (i.e. 𝑅𝑉𝑚 = ∑ 𝑟𝑘,𝑚
2𝑁

𝑘=1 , where 𝑟1,𝑚, …, 𝑟𝑁,𝑚 are 

intraday returns in the day 𝑚), 𝐵𝑉𝑚 is bi-power variation in this day (𝐵𝑉𝑚 = ∑ |𝑟𝑘,𝑚𝑟𝑘+1,𝑚|𝑁−1
𝑘=1 ) and 

Ω𝑚 is the quaricity in the day 𝑚 (Ω𝑚 = (𝜋2/4) ∑ |𝑟𝑘−3,𝑚𝑟𝑘−2,𝑚𝑟𝑘−1,𝑚𝑟𝑘,𝑚|𝑁
𝑘=4 ). As it was shown in 

(Barndorf-Nielsen, Shephard, 2006) the test statistic has asymptotically standard normal 

distribution. For each trading day we performed the test and if it had shown the existence of jumps, 

then the return with the highest absolute value was identified as a jump and removed from the 

sample. Then the procedure was repeated. In this way we obtained a sample of jumps, which 

allowed us to estimate the parameters of jump distribution. The results are presented in the Table 1. 

 

Table 1. Parameters of the two-sided Pareto jumps distribution for stock from Polish index 

WIG30 

Symbol 𝑪𝒋
𝟏 𝒉𝒋

𝟏 𝜷𝒋
𝟏 𝑪𝒋

𝟐 𝒉𝒋
𝟐 𝜷𝒋

𝟐 

ACP 0.0650 0.00018 1.37 0.0610 0.00018 1.39 

ALR 0.0350 0.00016 1.34 0.0470 0.00016 1.32 

ATT 0.4070 0.00013 1.39 0.5010 0.00013 1.36 

BHW 0.4190 0.00013 1.34 0.5290 0.00013 1.33 

BRS 0.0000 0.00152 2.48 0.0000 0.00152 2.52 

BZW 0.0580 0.00016 1.33 0.0510 0.00016 1.34 

                                                           
1 See for example (Abramovitz, Stegun, 1972). 
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CCC 0.0580 0.00027 1.45 0.0630 0.00027 1.45 

CPS 0.0320 0.00041 1.48 0.0270 0.00041 1.49 

ENA 0.0140 0.00091 1.66 0.0170 0.00091 1.61 

EUR 0.0320 0.00022 1.34 0.0220 0.00044 1.45 

GTC 0.0300 0.00130 1.72 0.0210 0.00134 1.81 

ING 0.0820 0.00034 1.44 0.0800 0.00034 1.43 

JSW 0.0310 0.00066 1.42 0.0270 0.00067 1.42 

KER 0.0730 0.00016 1.35 0.0700 0.00016 1.35 

KGH 0.0040 0.00215 1.79 0.0080 0.00202 1.76 

LPP 0.1650 0.00001 1.18 0.1700 0.00001 1.18 

LTS 0.0290 0.00035 1.43 0.0240 0.00033 1.43 

LWB 0.1270 0.00026 1.37 0.1270 0.00026 1.37 

MBK 0.0590 0.00014 1.30 0.0640 0.00014 1.30 

MIL 0.0010 0.00173 2.33 0.0010 0.00173 2.45 

NET 0.0180 0.00193 2.07 0.0100 0.00192 2.24 

OPL 0.0000 0.00169 3.00 0.0010 0.00166 2.58 

PEO 0.0030 0.00242 2.14 0.0200 0.00242 1.89 

PGE 0.0060 0.00077 1.71 0.0060 0.00077 1.67 

PGN 0.0050 0.00177 2.09 0.0160 0.00176 1.89 

PKN 0.0020 0.00161 1.91 0.0210 0.00189 1.60 

PKO 0.0170 0.00040 1.44 0.0110 0.00040 1.47 

PZU 0.0140 0.00035 1.43 0.0120 0.00035 1.45 

SNS 0.0001 0.00245 3.42 0.0011 0.00244 3.52 

TPE 0.0012 0.00318 3.83 0.0009 0.00318 4.12 

Source: Own computations 

 

 Having eliminated jumps one can estimate the parameters of the continuous part of the 

process – namely, expected returns, as well as variances and covariances of returns. Base on this 

one can consider generalized portfolio problem. Here we consider a set of effective portfolio in the 

classical sense – i.e. the portfolios with the lowest variance, given the assumed expected return. 

We consider the solutions to the following problem: 

min
𝛼≥0

𝐾2(𝛼),  subject to 𝐾1(𝛼) ≥ 𝑟 , 

with respect to different assumed expected return 𝑟, where the critera 𝐾1 and 𝐾2 are defined by the 

eqn. (17) and (18). The results are presented in Figure 1, which depicts the minimal variance of a 

portfolio return given the assumed mean return. Figure 2 contains the values of jumps risk criterion 

𝐾3(𝛼) for the effective portfolios in mean-variance sense, assuming that the disutility of jumps 

function in the eqn. (30) is quadratic: 𝑈(𝑥) = 𝑥2. As can be seen on the graphs, there exists a 

tradeoff between the two types of risk. The effective portfolios with lower risk of the continuous part 

(measured by variance of returns) usually have higher risk of jumps. This suggest that the 

interdependences between the three considered criteria can be nontrivial and are worth further 

considering. 
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Figure 1. The minimal variance with respect to mean return of a portfolio  

 

Source: Own computations 

 

Figure 2. Jump risk measure with respect to mean return of a portfolio 

 

Source: Own computations 

 

 

6 Conclusions 

In the paper we consider the extension of the classical portfolio analysis for one more criterion, 

measuring the risk of sudden changes in asset prices and in the value of portfolio (“jumps”). We 
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have shown that there are various of ways in which one can account for this additional source of 

risk. We propose to measure this risk using expected value of disutility of jumps, calculated 

according to the measure defined as the convulsion of measures describing jumps of individual 

assets in the portfolio. Such criterion is both intuitive and relatively easy to handle numerically.  

In some cases, as it was shown in (Kliber, 2008) and (Kliber, 2013), it is possible to obtain 

analytical formulae for the value of the jumps risk criterion. In this paper we consider the case in 

which jumps have two-sided Pareto distribution, i.e. jumps sizes obey power law. Under such 

assumption the analytical solution is unknown. One can make computations numerically using 

Fourier transform of measures describing jumps sizes and adopting the FFT (Fast Fourier 

Transform) algorithm. However, it should be noted that even such computations can be costly, as 

the calculations of Fourier transform of Pareto distributions involve the computation of incomplete 

gamma functions, what can be time-consuming. 
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