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Abstract:
Among the challenges facing the European Union agricultural sector in the coming years, the
impacts of climate change could lead to much greater variability in farmers’ incomes. In this
context, the insurance industry will have to develop new instruments to cover farmers’ incomes
against losses due to meteorological factors. Some protective technologies that farmers can use for
climate risk management have associated costs that vary as a function of the losses involved. These
sorts of instruments compete with other less flexible instruments such as crop insurance. We here
analyse an issue of decision-making, where the farmer can decide how much to invest in protection,
as in situations where the farmer chooses which portion of a loss to protect in the case of adverse
weather conditions, and we propose optimal management to mitigate the increasing negative
effects of climate uncertainty. By analysing the optimal policy in a continuous choice situation, we
consider whether farmers, as part of their crop management duties, should opt to protect some
portion of their harvest value with available technologies, or whether they should protect the entire
crop. To analyse this decision-making problem, we employ the cost-loss ratio model and take risk
aversion into account.
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1 Introduction  

Climate change is already happening and will continue to occur even if global greenhouse gas emissions 

are curtailed. There is now concern that global warming has the potential to affect the climatic regimes 

of entire regions (IPCC, 2014). Many studies document the implications of climate change for agriculture 

and show that effects vary among regions and at different scales (global, regional and local) (IPCC, 

2014, 2007; GHF, 2010; González-Zeas, 2014; Quiroga et al., 2009). The economic effects also vary 

between regions (IPCC 2014, Parry et al., 2004), but in general they highlight the increasing vulnerability 

of farmers’ incomes (Quiroga et al., 2015). On the other hand, among the changes to be faced by the 

European Union agriculture sector in coming years, the so-called CAP Health Check could give rise to 

significantly higher variability in farmers’ incomes (Quiroga et al., 2016). The degree of attention being 

paid to the behaviour of agricultural producers operating under conditions of risk has been increased by 

the progressive liberalization of world agricultural markets (Hope and Lingard, 1992; Quiroga and 

Suarez, 2016; Morss et al., 2010).  

 

In this context, the insurance industry is faced with the development of new instruments in order to 

protect farmers’ incomes from climate risks (Anwar et al., 2013; Iglesias et al., 2012). Moreover, some 

protective technologies that farmers can use for climate risk management have associated costs which 

vary as a function of the loss of value involved, and these kinds of instrument may be competitive with 

less flexible insurance mechanisms.  

 

We here analyse a problem of decision-making where the farmer can decide how much to invest in 

protection, covering situations in which farmers choose the proportion of the loss that they may avoid in 

the event of adverse weather conditions. The aim of the paper is to propose optimal management 

decisions in this context, in order to mitigate the increasing negative effects of climate change. 

Information about climate and weather and risk aversion are key determinants for an optimal decision 

in this type of problem (Cerdá and Quiroga, 2010; Cerdá and Quiroga, 2011). By analysing the optimal 

policy in a continuous choice situation, we consider whether farmers, as an aspect of crop management, 

could better protect a portion of their harvest value with an available technology, or whether it might be 

optimal to protect the whole crop by purchasing fixed insurance, or else using that protection across the 

entire harvest value. To analyse this decision-making problem, we propose to employ the cost-loss ratio 

approach, already widely employed in the literature in assessing the economic value of weather 

forecasts (Katz, 1993; Katz and Murphy, 1997; Palmer, 2002; Katz and Ehrendorfer, 2006; Cerdá and 

Quiroga, 2015).  

 

As far as the quality of meteorological information is concerned, recent improvements in atmospheric 

observational technology, methods of data assimilation, numerical model formulation, and the use of 

ensemble techniques have led to substantial increases in forecasting skill (Bauer et al., 2015; Shapiro 

and Thorpe, 2004). However, despite these improvements, limitations persist in the ability to forecast 

high-impact weather events, and decision-making sometimes requires the use of such forecasts to 

minimize an expected expense. It should be noted that many users remain aware of the uncertainty 
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attributable to the forecast probability (Cerdá and Quiroga, 2015; Katz and Ehrendorfer, 2006), and the 

attitude towards risk is crucial to finding the optimal policy; thus, we analyse the results in terms of risk-

aversion considerations. 

 

The paper proceeds as follows: Section 2 provides the conceptual framework for our approach; Sections 

3 and 4 describe the results of the optimal decision-making policy for risk-neutral and risk-averse 

behaviour, respectively: and discussion and conclusions are presented in Section 5. Finally, formal 

solutions to some of the optimization problems are provided in Annexes A and B. 

 

2 The model 

The cost-loss ratio is a decision-making approach widely analyzed in the literature for assessing the 

economic value of weather forecasts (Katz, 1993; Palmer, 2002; Katz and Ehrendorfer, 2006; Cerdá 

and Quiroga, 2015). The model involves two possible actions, to protect  1  or not to protect 

 0 , and two possible events, adverse weather ( 1  ) and non-adverse weather ( 0  ).  

 

The decision maker is assumed to incur a cost C>0 if protective action is taken, a loss L>0 if protective 

action is not taken and adverse weather occurs, and otherwise no cost or loss. We consider a variation 

of this prototype model to introduce the possibility of analyzing the farmer’s decision when given the 

possibility of protecting some share  of the total harvest value L . The type of protection chosen could 

avoid physical loss (i.e. applying protective technology to some plants) or simply provide an economic 

compensation (i.e. purchasing insurance for part of the crop). In both cases, we consider that the farmer 

can decide the proportion of loss protected from adverse weather, so:  0,1 .  

 

Protecting a part of the loss K L  has a positive associated cost, which we consider a proportion of 

the avoided loss K L  , where 0 1  . We consider the common assumptions of the familiar 

prototype usually referred to as the cost-loss ratio situation (Murphy and Ehrendorfer, 1987, Katz, 1993), 

and a summary of the model structure is shown in Table 1. 

 

Table 1  Model structure summary 

 

Two states of nature  adverse weather 1   or non-adverse 0   

Infinite possible actions  protect  0,1  

Protection cost L  

Loss value in the event of adverse 
weather 

-L L  (non avoided loss value) 
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The expense value expressions associated with each action and state of nature are presented in Table 

2. The decision-maker is assumed to incur a cost (L +(1-)L) if protective action is taken over a 

portion  of the loss and adverse weather occurs, and a cost (L) if the same portion is protected but 

no adverse weather occurs.  

 

 

Table 2  Expense matrix 

 

Action State of nature 

 Adverse weather ( 1  ) Non- adverse weather ( 0  )  

To protect    - (1 )L L L L L        L  

 

As mentioned above, in the following sections we consider two different risk approaches: 

• A risk-neutral agent 

• A risk-averse agent 

 

3 Optimal level of protection for a risk-neutral farmer 

3.1 Climatological information 

Climatological (or prior) information consists of probability of adverse weather,  P Pr 1    based 

on statistical and historical information which the decision-maker can receive each day. When this is the 

sole information that farmers have available, the decision to protect a portion  [0, 1] of the loss value 

incurs for them the following expected expense: 

     E (1 ) (1 ) (1 )P L L P L P L L               . 

 

Under risk-neutral behaviour, the farmer will minimize the expected expense, so he or she will choose 

 [0, 1] such as:  

  

 . .  0,1

Min L P

s a




 






 

 

So the optimal policy would be: 

 

 

*

*

0      0

1      0

if P P

if P P

 

 

  

  

    

    
  

 

08 March 2017, 7th Economics & Finance Conference, Tel Aviv ISBN 978-80-87927-32-8, IISES

330http://www.iises.net/proceedings/7th-economics-finance-conference-tel-aviv-israel/front-page



  

If P  ,    E 0, 0,1     then the farmer has the same utility whatever the value of  , 

including 0   and 1  . Accordingly, depending on the cost of protection and the adverse weather 

probability, the farmer should protect the overall harvest or none of it, so he or she should never 

purchase an insurance covering a portion of the loss value, the result being the same obtained in the 

literature when mid-way levels of protection are not an option. (Murphy et al., 1985). 

 

3.2 Imperfect information 

Next, we analyze the decision where the farmer has access to an imperfect information system. An 

imperfect forecast is assumed to consist of the random variable Z , as a forecast of adverse weather (

1Z ) or non-adverse weather ( 0Z ). As in Murphy et al. (1985), we consider the following 

conditional (or ex-post) probabilities of adverse weather:  11Pr1  ZP  ,  01Pr0  ZP  , 

so two parameters describing basic characteristics of the forecast must be specified in order to 

determine forecast quality alone (Murphy and Ehrendorfer, 1987). Without loss of generality, the 

following ordering is assumed: 100 PPP    (Katz and Murphy, 1997). If the farmer has access to 

this imperfect forecast system, the ex-post expected utility in the case of choosing the protected portion 

 of the harvest value, will be: 

• If Z=1:  

1 1 1 1

1 1E( ) (1 ) (1 )P L L P L               

• If Z=0:  

0 0 0 0

0 0E( ) (1 ) (1 )P L L P L              , 

Where: 

1 is the portion of loss value that is chosen to protect if Z takes the value 1, 

0 is the portion of loss value that is chosen to protect if Z takes the value 0. 

 

Therefore, if the farmer takes into consideration the imperfect forecast, he or she would protect the 

fraction 1 of the total loss if Z=1, and a different proportion 0 if Z=0. In this case, the ex-ante expected 

utility would be: 

 

 

0 1 1 1 1

1 1

0 0 0

0 0

E( , ) (1 ) (1 )

(1 ) (1 ) (1 )

P P L L P L

P P L L P L





    

  

           

           

 

Therefore, the farmer that chooses the portions  0 1, 0,1    that minimize the expected expense 

should solve the following problem:  
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0 1

0 1 1 1 1

1 1
,

0 0 0

0 0

0

0

1

1

Min   E( , ) (1 ) (1 )

(1 ) (1 ) (1 )

. . 0

           1 0

0

           1 0.

P P L L P L

P P L L P L

s t


 



    

  









           

           

 

 

 

 

 

The   optimal solution of   Min h


 is the same as the   solving      - ,Max h f


   so this 

problem has the following general structure:   Max f


  restricted to  1 0g   ,  2 0g   , 

 3 0g   ,  4 0g    where    f E   ,   0

1g    ,   0

2 1g    ,   1

3g    , 

  1

4 1g    , being  0 1,   . 

Kuhn-Tucker conditions, which are necessary conditions for local optimality, are in this case: 

KT1)            1 1 2 2 3 3 4 4 0,0f g g g g                  , that is: 

      0 0 0 1 2

1 1 1 3 4

1 1 1 1 0

(1 ) 0

P P L P P L P P L

P P L P PL P P L

  

  

   

   

         

      

 

KT2) 1 2 3 40,   0,   0,   0        

KT3)        1 2 3 40,   0,   0,   0g g g g        

KT4)        1 1 2 2 3 3 4 40,   0,   0,   0g g g g           , 

where 1 , 2 , 3 , 4 , are the multipliers associated to the respective restrictions  1 0g   , 

 2 0g   ,  3 0g    and  4 0g   . 

To apply the Kunt-Tucker conditions, we begin for the KT4) condition, which sources the following 

possibilities: 

P1) 1 2 3 40,   0,   0,   0        

P2) 
1

1 2 30,   0,   0,   1        

P3) 
1

1 2 40,   0,   0,   0        

P4) 
0

1 3 40,   1,   0,   0        

P5) 
0

2 3 40,   0,   0,   0        
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P6) 
1 1

1 20,   0,   0,   1        (which is not possible since 
1 0   and 

1 1   are 

incompatible). 

P7) 
0 1

1 30,   1,   0,   1        

P8) 
0 1

2 30,   0,   0,   1        

P9) 
0 1

1 40,   1,   0,   0        

P10) 
0 1

2 40,   0,   0,   0        

P11) 
0 0

3 40,   1,   0,   0        (which is not possible since 
0 0   and 

0 1   are 

incompatible). 

P12) 
0 0 1 10,   1,   0,   1        (also incompatible). 

 

Assuming we are in P1) we have 1 2 3 40,   0,   0,   0       . 

In such a situation, the KT1) condition can be written as    0,0 ,f   so the following conditions 

have to be satisfied: 

0 0 0 0(1 ) (1 ) (1 )(1 ) 0P P L P P L P P L P              , 

1 1 1 1(1 ) 0P P L P PL P P L P           . 

Then if 0 1,P P P     whatever decision  0 1, 0,1   is the optimal policy. 

 

Now, if we suppose we are in P2): 
1

1 2 3 0,   1       . 

The KT1) condition can be written as: 0 0 0 0(1 ) (1 ) (1 )(1 ) 0P P L P P L P P L P               

Furthermore:  

LPPLPPLPPLPPLPPLPP   )1(0)1( 11144111   

To satisfy KT2) necessarily 04  , so:    1111 0)1( PLPPLPPLPP . Therefore, 

when 10 PP   the optimal solution is 11   and the farmer is indifferent to what  0 0,1 .   

 

If we are in P3): 
1

1 2 4 0,    0       , to satisfy the KT1) condition: 

0 0 0 0(1 ) (1 ) (1 )(1 ) 0P P L P P L P P L P               

and: LPPLPPLPPLPPLPPLPP   )1(0)1( 11133111  . 

To satisfy KT2) we necessarily have 3 0  , which is possible if and only if: 

1 1 1 1(1 ) 0 .P P L P PL P P L P            But 1 0P P   is clearly impossible because 10 PP  , so 

P3) offers no other feasible solution. 
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Now, if we consider P4):
0

1 3 4 0,   1       , the KT1) condition implies that: 

1 1 1 1(1 ) 0P P L P PL P P L P           , and also: 

0 0 0 2(1 ) (1 ) (1 )(1 ) 0P P L P P L P P L               

 2 0 0 0(1 ) (1 ) (1 )(1 )P P L P P L P P L            

The KT2) condition implies that: 

          00002 011110 PLPPLPPLPP  

At the same time we have that 0 1P P , which is unfeasible when 1P , so once more P4) does not 

offer any feasible solution. 

 

Taking into account P5): 
0

2 3 4 0,   0       , to satisfy KT1) it is necessarily: 

  1111 01 PLPPLPPLPP    , and also:  

       1000 1111    LPPLPPLPP . 

The KT2) condition implies that: 

       00001 011110 PLPPLPPLPP    . 

Therefore, if 0 ,P   then 00   and the agent is indifferent among any proportion
1 . 

 

Dealing with P7): 
0 1

1 3 0,   1,   1       , the KT1) condition can be written as:  

  01 4111    LPPLPPLPP  

From KT2) we have 04  , which implies: 

  1111 01 PLPPLPPLPP    , and also: 

       01111 2000    LPPLPPLPP  

The KT2) condition implies that: 

       00002 011110 PLPPLPPLPP    . 

So when 0P   10   and 11  . The optimal policy is to protect the whole harvest regardless 

of the forecast received. (See Figure 1). 

 

Figure 1  Range of values where whole protection is optimal 

 

 

Whole protection 

0 0P  1P  1 
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In P8): 
0 1

2 3 0,   0,   1       , the KT1) condition entails:  

 1 1 1 41 0,P P L P PL P P L           and from KT2) we have 02   and 04  , so: 

  1111 01 PLPPLPPLPP    , and also: 

       0000 01111 PLPPLPPLPP     

Therefore, when 10 PP     00   y 11  ; that is, the agent should protect all the harvest 

value if an adverse weather forecast is received, and take no protective action in any other case. (See 

Figure 2). 

  

Figure 2  Range of values where partial protection is optimal 

 

 

If we are in P9): 
0 1

1 4 0,   1,   0       , the KT1) condition can be written as:  

       01111 2000    LPPLPPLPP , and also: 

  01 3111    LPPLPPLPP  

In addition, from KT2) we have 02   and 03  , which implies 0P  and 1P  at the same 

time. However, since 0 1P P , this is impossible and P9) offers no feasible solution. 

 

Finally, if we consider P10): 
0 1

2 4 0,   0,   0       , the KT1) condition implies: 

       01111 1000    LPPLPPLPP , and also: 

  01 3111    LPPLPPLPP  

Moreover, from KT2) we have 1 30,   0   , which is satisfied if and only if: 

       01111 000  LPPLPPLPP   , and also: 

  01 111  LPPLPPLPP    

Thus implying 0P  and 1P . 

 

 

  

1

0

1

0








 

0 0P  1P  1 
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So, given that 0 1P P  and furthermore: 1P   the resultant solution is: 00   and 01  . 

Therefore in this case the optimal policy is to not protect the harvest (see Figure 3). 

 

Figure 3  Range of values where no protection is optimal 

 

 

So the optimal policy solving the problem (1) is: 

 

1. If 0P  10   and 11  . The optimal policy is to protect the overall harvest whatever the 

forecast received. 

2. If 10 PP   11   and any  0 0,1   is an optimal solution. 

3. If 10 PP    00   and 11  . The farmer should protect the overall harvest value if an 

adverse weather forecast is received, but take no protective action in any other case. 

4. If 10 PP    00   and any  1 0,1   is an optimal solution. 

5. If 1P  00    01  . The farmer should take no protection whatever the forecast received. 

 

Figure 4 summarizes the optimal policy. 

 

Figure 4  Optimal policy in the case of imperfect information and risk-neutral behaviour 

 

Therefore, a risk-neutral farmer should never prefer an intermediate level of protection, and the optimal 

policy is to protect the overall harvest value (or contrarily to take no protective action), but never to 

case the optimal policy is not to protect the harvest. (See Figure 3) 

 

0 0P  1P  1 

 

No protection is optimal 

 

 

1

0

1

0








 

0 0P  1P  1 

 

110   010   
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choose an intermediate protective level, whatever the kind of weather information received 

(climatological or an imperfect forecast). 

 

4 Optimal level of protection for a risk-averse farmer 

 

In this section we seek to prove that a farmer’s optimal policy will be different when we consider risk 

behaviour; in particular, we expect that in this case, there is a chance of the farmer selecting an 

intermediate level of protection as the optimal solution. In the case of a risk-averse agent, he or she will 

maximize the expected utility. Here, we consider the CARA (Constant Absolute Risk Aversion) utility 

function as representative of agents’ preferences,    U expx x   , where the Arrow-Pratt 

absolute risk aversion coefficient (  ) can be mathematically calculated as follows (Mas-Collel et al., 

1995):  

 ( X ) =
)('

)(''

XU

XU
   

This coefficient can be interpreted as the percentage change in marginal utility caused by each monetary 

unit of a gain or loss. If the coefficient does not change across the monetary level, the decision-maker 

exhibits constant absolute risk aversion (CARA), which implies that the level of the utility function 

argument does not affect his or her decisions under uncertainty. Since   cannot be considered as a 

non-dimensional measure of risk aversion, its value is dependent on the currency in which the monetary 

units are expressed (Gómez-Limón et al., 2003), making the comparison among different economic 

agents difficult. However, it remains a good measure for decision-making problems involving a single 

economic agent. 

 

4.1 Climatological Information 

 

In this case, expected utility when the portion of the loss value  [0, 1] is preserved, will be: 

     UE U (1 ) (1 )UP L L P L                = 

   = U (1 ) (1 )UP L L P L         , assuming the CARA utility function can be written as 

     = exp (1 ) (1 ) expP L L P L                     = 

   exp exp (1 ) (1 )L P L P          . 

So, the farmer should choose  0,1  following: 
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    UE( ) exp exp (1 ) (1 )

. .  0

  1 0.

Max L P L P

s a

 


   





      

 

 

 

We prove in Annex A that an internal solution to this problem exists, and is characterized by the 

expression (2): 

If  
 

 
(1 )

1< exp
1

P
L

P














      

 
*

(1 )
ln

1
1

P

P

L












   
  

    
 
 
  

 (0, 1)    (2) 

 

Therefore, there is an interval for which a farmer with aversion to risky behaviour will obtain a greater 

utility if able to decide which portion of his or her harvest value to protect from climatic risk. We also 

obtain that, in the cases in which a risk-neutral agent decides to protect all of a harvest, (if P  ), a 

risk-averse agent should take the same decision. However, risk-averse behaviour is more preservative, 

and there are cases in which risk-neutral agents should protect none of the harvest while risk-averse 

agents should protect some part of it.  

 

4.2 Imperfect information 

Now we analyze the decision if a risk-averse farmer has access to some imperfect information system. 

In this case, the ex-post expected utility in the case of choosing the protected portion  of the harvest 

value will be: 

• If Z=1:  

1 1 1 1

1 1UE( ) (1 ) (1 )PU L L P U L                     
 

• If Z=0:  

0 0 0 0

0 0UE( ) (1 ) (1 )PU L L P U L                     
, 

The ex-ante expected utility would be: 

 

 

0 1 1 1 1

1 1

0 0 0

0 0

UE( , ) (1 ) (1 )

(1 ) (1 ) (1 )

P PU L L P U L

P PU L L P U L





    

  

                   

                    

 

    
    

1 1 1

1 1

0 0 0

0 0

exp (1 ) (1 ) exp

(1 ) exp (1 ) (1 ) exp

P P L L P L

P P L L P L
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1 1 1

1 1

0 0 0

0 0

exp (1 ) (1 )exp

(1 ) exp (1 ) (1 )(1 )exp .

P P L L P P L

P P L L P P L

 

 

   

   

      

      
 

Therefore, the farmer that chooses those portions  0 1, 0,1    that maximise the expected utility 

should solve the following problem:  

 
     

   

0 1

0 1 1 1 1

1 1
,

0 0 0

0 0

0

0

1

1

Max   UE , exp (1 ) (1 )exp

(1 ) exp (1 ) (1 )(1 )exp

. . 0

           1 0

0

           1 0.

P P L L P P L

P P L L P P L

s a

 
 

 

     

   









      

      

 

 

 

 

 

In Annex B we solve this problem and prove that the solution verifying the Kuhn-Tucker conditions for 

this problem is: 

• 


































L

P

P








)1(

)1(
ln

1
0

0

*0
 and 


































L

P

P








)1(

)1(
ln

1
1

1

*1
if 

 


















L
P

P

P








exp
)1(

)1(

0

0

1

. 

That is, to protect a positive portion of the harvest value, even if non-adverse weather is forecast, and 

to preserve a higher share of this value in the case of receipt of an adverse weather forecast. 

• 
 

0

00*

(1 )
ln

1
1

P

P

L








   
  

    
 
 
  

 and 
1* 1      if 

 
 

0 1

0

0

 

  (1 )
exp

1

P P

P
L

P








 





 

 

In this situation, the farmer should also protect a positive share of harvest value when receiving a non-

adverse weather forecast, but should protect the whole harvest value if adverse weather is predicted. 

• 
0* 0   and 

 
1

11*

(1 )
ln

1
1

P

P

L








   
  

    
 
 
  

 if 

 
 

 

1

01

1 0

 

  (1 )(1 )
exp

1 1

P

PP
L

P P






 





 

  

. 

The optimal policy for this interval is to not protect unless the forecast shows adverse weather. 

 

• 
0* 1   and 

1* 1       if: 0   P  . 

In the situation of relatively cheap protection, the optimal policy is to protect the overall harvest value, 

whatever the forecast received. 
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• 
0* 0   and 

1* 1    if: 

 


















)1(

)1(
exp

0

0

1








P

P
L

P

 

Therefore, the optimal policy should be to take no protection if the forecast weather is non-adverse and 

to protect the overall harvest if receiving an adverse weather forecast. 

• 
0* 0   y 

1* 0   if:  
 

1

1

(1 )
exp

1

P
L

P










 

Thus, the optimal action is to not protect, whatever the received forecast. 

 

5 Application: A case study of freeze-risk insurance in southern Spain 

 

Freeze is one of the most significant risks affecting crop yields. Southern Spain is a Mediterranean 

climate region with continental influence. The probability of freeze is very small in this region, but when 

this extreme event occurs, crop yields suffer great losses. The probability of the temperature being below 

0ºC based on climatological information obtained at Córdoba (a location in southern Spain) for the period 

1990-2000 is P = 0.0117. Currently, farmers can contract fixed insurance to protect their complete 

harvest, and the cost is around 2% of yield losses. (Quiroga et al., 2011).  

 

As we have demonstrated in this paper, if the probability of an extreme event is lower than the fixed cost 

of the risk premium, based on climatological information, farmers have no private incentives to contract 

the insurance that would seem compulsory in the current situation. We want to illustrate the effects of a 

potential, more flexible insurance that would allow farmers to protect a proportion of the harvest. In Table 

3 this particular case is analysed for a range of costs for risk premium (normalized as a proportion of 

the loss protected). In our case study:  ={0.0125, 0.015, 0.0175, 0.02, 0.025}, L  = 1 and P = 0.0117.  

 

This is a situation in which the minimum expected expense is achieved if the farmer does not protect 

the harvest. In Table 3, we observe how the proportion of harvest that should be optimal to protect is an 

increasing function of the absolute risk aversion coefficient of the farmers for a particular example ( = 

0.0125). Figure 5 illustrates the proportion of the harvest that the farmer would be happy to protect with 

insurance for a range of risk premium costs as a function of the absolute risk aversion coefficient. The 

results show that there is a chance of establishing private incentives to purchase a more flexible form 

of insurance as an adaptation strategy to climate risks. 

 

 

Table 3  Proportion of harvest that should be optimal to protect (
* ) as a function of the 

absolute risk aversion coefficient  , when  = 0.0125; L = 1 and P = 0.0117  
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  *  

0.1 33.05% 

0.2 66.53% 

0.3 77.68% 

0.4 83.26% 

0.5 86.61% 

0.6 88.84% 

0.7 90.44% 

0.8 91.63% 

0.9 92.56% 

1 93.31% 

 

 

 

 

Figure 5  Proportion of harvest that should be optimal to protect (
* ) as a function of the 

absolute risk aversion coefficient  , being  ={0.0125, 0.015, 0.0175, 0.02, 0.025}, L = 1 and P

= 0.0117 

 

6 Discussion and conclusions 

We have analyzed the optimal protection level in two different situations, a risk-neutral approach versus 

a risk-averse context. On one hand, the results show that in the case of a risk-neutral farmer, an 

intermediate level of protection should never been preferred, whatever the kind of weather information 

received (climatological or imperfect forecast). 
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On the other hand, in the case of risk-adverse behaviour, comparing the optimal policy structure 

between situations in which climatological information is available and in which an imperfect forecast is 

available for the farmer, we observe that the information value is positive in almost all cases. However, 

there exist the following exceptions:  

If  
 

1

1

(1 )
exp

1

P
L

P










, the agent that receives a weather forecast should decide to take no protective 

actions, whatever the forecast results. In addition, as 1P P   implies 
   

1

1

(1 )(1 )

1 1

PP

P P







 




 
, so that in 

this interval  
 

(1 )
exp

1

P
L

P














 is maintained, the optimal decision in the case of climatological 

information was therefore the same (not to protect). In this case, the imperfect forecast does not affect 

the farmers’ decision, so the information has no economic value. 

 

The same occurs if 0P  , (when protecting cost is low in relation to the assumed risk) the farmer 

should protect the overall harvest whatever the weather forecast. In addition, as 0P P  always implies 

that P  , in this case the agent’s decision would be the same protective behaviour if only 

climatological information was available; the information has no value in this case, because the 

information has no effect on the decision or the consequences. 

 

Nevertheless, in the rest of situations, optimal policy depends on the meteorological information 

received; in fact,
0* 1*  , so the optimal decision is different if the forecast anticipates adverse or non-

adverse weather. Therefore, the information is important since it reduces the farmer’s expected 

expense. Consequently, the information value is positive in this situation. 

 

In conclusion, this paper examines the situation in which a farmer can manage climate risk over a given 

harvest by choosing a protection level applied as a function of the associated cost. The results show 

that a risk-neutral agent would never choose an intermediate level of protection, but when risk-averse 

behaviour is taken into account, interesting management possibilities emerge. There do exist cases in 

which the lowest expected expense is achieved when no protection is taken, although the highest 

expected utility is reached when a part of the harvest is protected, and the larger the risk-aversion factor, 

the larger the optimal portion of loss value protected. 
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7 Annex A 

    UE( ) exp exp (1 ) (1 )

. .  0

  1 0.

Max L P L P

s a

 


   





      

 

 

 

The problem has the following general structure:  ( )Max f


  restricted to 1( ) 0g   , 2 ( ) 0g    where

( ) ( )f UE  , 1( )g     and 2 ( ) 1g    . 

Kuhn-Tucker conditions, which are necessary conditions for local optimality, are in this case: 

KT1) 
' ' '

1 1 2 2( ) ( ) ( ) 0f g g        

KT2) 1 20,   0    

KT3) 1 2( ) 0,   ( ) 0g g    

KT4) 1 1 2 2( ) 0,   ( ) 0g g     , 

Where 1  and 2  are the multipliers associated to the respective restrictions 1( ) 0g    and 

2 ( ) 0g   . 

To apply the Kunt-Tucker conditions, we begin with the KT4) condition. Then we have the following four 

possibilities: 

P1) 1 20,   0    

P2) 1 0,   1    

P3) 20,   0    

P4) 0,   1    (which is obviously incompatible). 

If we assume we are in P1): 1 20    0y   . In such case, the KT1) condition ends up as
' ( ) 0f   . 

That is: 

   

         

' ( )
0 ( ) exp exp (1 ) (1 )

exp exp (1 ) exp exp (1 ) (1 ) .

dUE
f L L P L P

d

L P L L L P L L L P L

 

  


    



         

         

             

 

So it can be verified that: 

' ( ) 0f     exp (1 ) (1 ) 0P L L L P L             

 
   

(1 ) (1 )
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1 1
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To satisfy the KT3) condition, it is necessarily the case that:
*0 1  . 

Therefore, we have: 
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1 (1 ) (1 )
0 0 1 ln exp .
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So, if 
 

 
(1 )

1 exp
1

P
L
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 is verified (note that only the first inequity can be satisfied in the case 

of P  ), then, the solution to the problem is 
 

*

(1 )
ln

1
1

P

P

L












 
 

 
  . 

 

We can now consider the case in which P2) is satisfied: 1 0    1y   . In this case, KT1) condition 

ends up as 
'

2(1) 0f   , so: 

    '

2 (1) exp exp ( ).f L P L P L L P L L L P                      

To satisfy KT2), then necessarily 2 0  , which is only possible if P   

So, if 
 

 

1
1

1

P
P

P













  


, we find that the single solution satisfying Kuhn-Tucker conditions is 

1  . 

 

Finally, we can consider P3): 20    0y   . In this case, the KT1) condition ends up being 

'

1(0) 0f   , so: 

    '

1 (0) exp 1 .f P L L L P L           

To satisfy KT2) it is necessary that 1 0  , which is verified if and only if 

    
 

 
 

1
exp 1 0 exp .

1

P
P L L L P L L

P



 




    




     


 

Consequently, the solution that verifies the Kuhn-Tucker conditions for this problem is: 
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0    (that is, zero protection), when 
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exp .
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1    (that is, overall protection), when 
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     (protecting a positive portion of the harvest value), when 

 

 
 

1
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To tackle with sufficiency conditions for the maximization problem, we want to prove that the function 

( ) ( )f UE   is a concave function: 

 

        

       

     

'' ( ) exp exp 1 1                        

exp exp 1                                                         

exp exp 1

positivo positi

f L L P L L L P L

L P L L L L

L P L L L

 





       

     

    

       

      

         
2

exp 1 0.

positivonegativovo

L L L L P   

 
    
 
 

 

 

Therefore, the objective function of this maximization program is concave, and the available set is 

convex, so we have a convex program, so the Kuhn-Tucker conditions are at the same time necessary 

and sufficient conditions for global optimality and the obtained solution verifying Kuhn-Tucker conditions 

is a global optimum for the problem. 
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8 Annex B 
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The problem has the following general structure:   Max f


  restricted to  1 0g   ,  2 0g   , 

 3 0g   ,  4 0g    where    f UE  ,   0

1g    ,   0

2 1g    ,   1

3g    , 

  1

4 1g    , being  0 1,   . 

Kuhn-Tucker conditions, which are necessary conditions for local optimality, are in this case: 

KT1)            1 1 2 2 3 3 4 4 0,0f g g g g                  , that is: 

           

       

0 0 0

0 0 1 2

1 1 1

1 1 3 4

1 exp (1 ) 1 1 exp 0

exp (1 ) (1 ) exp 0

P P L L L L P P L L

P P L L L L P P L L

 

 

        

        

          

        

 

KT2) 1 2 3 40,   0,   0,   0        

KT3)        1 2 3 40,   0,   0,   0g g g g        

KT4)        1 1 2 2 3 3 4 40,   0,   0,   0g g g g           , 

Where 1 , 2 , 3 , 4  are the multipliers associated to the respective restrictions  1 0g   , 

 2 0g   ,  3 0g    and  4 0g   . 

To apply the Kunt-Tucker conditions, we begin for the KT4) condition, that sources the following 

possibilities: 

P1) 1 2 3 40,   0,   0,   0        

P2) 
1

1 2 30,   0,   0,   1        

P3) 
1

1 2 40,   0,   0,   0        

P4) 
0

1 3 40,   1,   0,   0        

P5) 
0

2 3 40,   0,   0,   0        
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P6) 
1 1

1 20,   0,   0,   1        (which is not possible since 
1 0   and 

1 1   are 

incompatible). 

P7) 
0 1

1 30,   1,   0,   1        

P8) 
0 1

2 30,   0,   0,   1        
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0 1
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0 1
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0 0
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P12) 
0 0 1 10,   1,   0,   1        (also incompatible). 

 

Assuming we are in P1): 1 2 3 40,   0,   0,   0       . 

In such a situation, KT1) condition can be written as:    0,0f   , so the following has to be 
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Moreover, as well: 

08 March 2017, 7th Economics & Finance Conference, Tel Aviv ISBN 978-80-87927-32-8, IISES

347http://www.iises.net/proceedings/7th-economics-finance-conference-tel-aviv-israel/front-page



 
 

 
 

1

1* 1

11

1

 

(1 )
0 1 1 exp   

(1 )1
exp

1

P

P
L

PP
L

P




 









 
      

  
 

. 

So, as 0 1P P  and therefore: 
   

01

1 0

(1 )(1 )

1 1

PP

P P



 




 
, we find that the optimal solution would be: 

   
0 1

0 1

(1 ) (1 )
ln ln

1 1
1 , 1

P P

P P

L L

 

 


 

           
       

                 
    
        

 if and only if: 

 
 

1

0

0

 

  
(1 )

exp
1

P

P
L

P













 
 

. 

 

Now, if we suppose we are in P2): 
1

1 2 3 0,   1       . 

The KT1) condition can be written as: 
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Furthermore, as well: 
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To satisfy KT2) necessarily: 
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If we are in P3): 
1

1 2 4 0,    0       , to satisfy KT1) condition: 
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is satisfied. 

Also due to KT1), as
1 0  , the following is upheld: 

    1 1 3exp (1 ) 0P P L L L P P L           . 

Also, to satisfy KT2) we necessarily have 3 0  , which is possible if and only if: 
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which is clearly incompatible with 
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, so that P3) offers no feasible solution. 

 

Now if we consider P4): 
0

1 3 4 0,   1       , the KT1) condition implies that: 

 
1

11*

(1 )
ln

1
1

P

P

L








   
  

    
 
 
  

, 

and KT3) requires:
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Also, to satisfy the KT1) condition, while 
0 1  , it is necessary that: 

     0 0 2(1 ) exp (1 )(1 )exp 0P P L L L P P L L              . 

KT2) condition implies 2 0  , which is possible if and only if: 

     0 0 0(1 ) exp (1 )(1 )exp 0P P L L L P P L L P              . 

At the same time we have that 0 1P P , which is unfeasible when 1P  , so once more P4) does not 

offer any feasible solution. 

 

Taking into account P5): 
0

2 3 4 0,   0       , to satisfy KT1) it is necessarily the case that: 
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Moreover, from KT1), as
0 0  , we have: 
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From KT2) 1 0  , which requires: 
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Consequently the solution is: 
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Dealing with P7): 
0 1

1 3 0,   1,   1       , the KT1) condition can be written as:  

     0 0 2(1 ) exp (1 )(1 )exp 0P P L L L P P L L              . 

     1 1 4exp (1 )exp 0P P L L L P P L L            . 

From KT2) we have 2 40,   0   , which implies: 

     0 0 0(1 ) exp (1 )(1 )exp 0P P L L L P P L L P               , 

and,      1 1 1exp (1 )exp 0P P L L L P P L L P             . 

Moreover, since 0 1P P , the solution is:  

 1 , 1   if and only if: 0   P  . 

 

In P8): 
0 1

2 3 0,   0,   1       , the KT1) condition entails:  

    0 0 1(1 ) exp (1 )(1 ) 0P P L L L P P L             , and:  

     1 1 4exp (1 )exp 0P P L L L P P L L            . 
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If we are in P9): 
0 1

1 4 0,   1,   0       , the KT1) condition can be written as:  

     0 0 2(1 ) exp (1 )(1 )exp 0P P L L L P P L L              , and: 

    1 1 3exp (1 ) 0P P L L L P P L           . 

In addition, from KT2) we have 2 30,   0   , so: 

     0 0 0(1 ) exp (1 )(1 )exp 0P P L L L P P L L P               , and: 

       1
1 1

1

(1 )
exp (1 ) 0 exp

(1 )

P
P P L L L P P L L

P
 


    




      


. 

However, since 0 1P P , if  1
0 1

1

(1 )
1 exp

(1 )

P
P P L

P


  




     


, P9) does not offer a feasible 

solution. 
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So, given that 0 1P P  and furthermore:
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, the resultant solution is: 
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