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Abstract:
The aim of this paper titled “The Modelling of Potential Evapotranspiration Based on Climate Data
Using Empirical and Heuristic Methods” is to estimate the potential evapotranspiration in the Ergene
Basin, Turkey. Accurately observing the amount of total evapotranspiration in any given region
usually is a perilous task given the fact that setups to directly observe evapotranspiration are costly
build and highly effort-inducing to operate. Therefore, calculating the potential evapotranspiration of
a region by using the FAO-56 Penman-Monteith formula instead of observing directly is preferred.
However, FAO-56 PM formula requires a lot of different data sets, which may not be accessible in
various regions, to effectively utilize. For this reason, scientists have been researching different
methods to calculate potential evapotranspiration without the need for numerous climate data sets.
In this paper, in the first step, reference evapotranspiration was calculated using the FAO-56 PM
empirical formula. In the second step, potential evapotranspiration was calculated using the
Blaney-Criddle empirical formula. In the third step, climate data including Rs, E, Tmax, Tort, Tmin,
and Sh were used to calculate potential evapotranspiration using the MARS and GMDH heuristic
methods. Among these methods, the GMDH method combining Rs, E, Tmax, Tort, Tmin, and Sh
yielded the best performance with performance criteria of R2= 0.9846, MSE=49.07, MAE=5.56, and
AARE=7.23 compared to the reference evapotranspiration.
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1. Introduction 

The field of hydrology harbors a variety of applications and research topics, however it’s almost 

certain that any of these applications and research topics will require suitable climate data to be 

worked upon. It is therefore fair to state that meteorological data is vital for hydrology in turn 

engineering applications of hydrology. Most of this meteorological data are locally and 

periodically observed by meteorological observations stations all over the world. However, given 

the fact that there are many different types of climate data and not all observation stations have 

the perfect means, it is not out of the ordinary for observation stations to not observe and record 

some data sets for any given region. In the case of evapotranspiration, accurately observing the 

total amount of evapotranspiration in any given region usually is a perilous task given the fact 

that setups to directly observe evapotranspiration are costly build and highly effort-inducing to 

operate (Li, Zhao-Liang, et al. 2009). As this is the case, most observation stations don’t record 

evapotranspiration data sets of their region. This results in a great loss of scientific data and 

applications which could stem from said data as evapotranspiration is regarded as an important 

data set for many studies, first and foremost being agricultural research (Hargreaves, 1982). In 

order to obtain this data, scientists developed methods which eliminated the need for direct 

observation of evapotranspiration. Regarded as the most respected method to calculate 

evapotranspiration, Penman-Monteith formula is utilized by many researchers. However, the 

formula owes its success to the amount of different accurate data sets it uses to estimate 

evapotranspiration. As stated above, with many observation stations lacking in data sets, it is 

crucial to accurately estimate evapotranspiration with as little amount of different data as 

possible to make the data set obtainable and accessible everywhere. Machine learning models 

have been used in hydrology research extensively over the years, in this study 2 machine 

learning methods are used to obtain accurate and accessible evapotranspiration data.  

2. Study Area and Data 

Ergene Basin in Marmara Region of Turkey is selected as the study area. The climate data for 

the study area is acquired from various meteorological observation stations. Ergene Basin is 

situated in Thracia region of Turkey and holds importance for the country for various reasons. 

The basin has a surface area of 14486 km2 and encompasses a great percent of Edirne, 

Tekirdağ and Kırklareli while also encompassing a small portion of İstanbul. The basin’s border 

coordinates are 40,56 – 47,12 North and 20,03 – 28,17 East. One of the most defining factors 

for the basin is the fact that it hosts the Ergene River inside its border (Cengiz, 1996). Ergene 

River enters the basin’s borders from Istranca Mountains Range through North and joins the 

Meriç River in the South, which then pours into the Aegean Sea at Saroz Bay. The Basin borders 

Istranca Mountains Range and Bulgaria country border at North, Çerkezköy and Vize counties 

at East, Tekirdağ city at South and Greece and Bulgaria country borders at West (TCTOB, 

2022). The borders of the Ergene Basin are given with dashed lines in Figure 2.1 (Konukcu, 

2016). 
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Figure 2.1. Ergene Basin Border

 

Ergene Basin hosts many different meteorology observation stations. However, the observation 

periods and the climate data the stations are tasked to observe vary greatly from one station to 

another. This situation stems from the fact that some observation stations are smaller in size 

and scope and may be funded locally, such that their operation range doesn’t reach far from 

their location. The climate data used in this study are acquired from the meteorological 

observation stations are listed and their information are given in figure 2.2 (TAGEM, 2017). 

Figure 2.2. Utilized Meteorological Observation Stations in Ergene Basin 

Station Number Station Name Host City Latitude (°) Longitude (°) Attitude (m) 

17056 Tekirdağ Tekirdağ 40,9836 27,4904 59 

17050 Edirne Edirne 41,6706 26,5488 38 

17052 Kırklareli Kırklareli 41,7352 27,2173 213 
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2.1 Data 

The climate data used in this study are sourced from Tekirdağ center 17056 station, Edirne 

center 17050 station and Kırklareli center 17052 station which are located in the study area, 

Ergene Basin. The shared climate data from these stations are put together by calculating their 

average for each month, this makes it so that shared climate data from each station is 

homogenized for the whole basin. The missing data of any given station is compensated by 

other stations. From the stated 3 observation stations, monthly climate data from the year 1990 

to 2020, 31 years in total, are acquired. 6 separate monthly data sets are used in this study, 

each data set contains 372 data values, which in total makes 2232 individual data values. The 

monthly climate data sets used in this study are as follows: Average solar radiation (Rs), average 

evaporation (E), maximum temperature (Tmax), minimum temperature (Tmin), average 

temperature (Tavg) and average sunshine duration (Sh) (MGM, 2021). In order to investigate the 

correlation between the independent variable reference evapotranspiration and dependent 

variables climate data sets, Pearson’s correlation coefficient (r) is calculated. Direct and strong 

proportion between independent and dependent variables are expected to yield well estimation 

results. The correlation coefficient can have values between -1 and +1, negative values indicate 

inverse proportion while positive values indicate direct proportion, proximity to boundary values 

indicate strong proportion for correlations. In this study, Pearson’s correlation coefficients are 

calculated with the formula given below. Correlation coefficients calculated are given in figure 

2.3. As it can be seen from figure 2.3, correlation coefficients between independent and 

dependent variables are found to have strong direct proportion. 

𝑟 =
∑ (𝑋𝑖−�̅�)(𝑌𝑖−�̅�)𝑁

𝑖=1

√∑ (𝑋𝑖−�̅�)2 ∑ (𝑌𝑖−�̅�)2𝑁
𝑖=1

𝑁
𝑖=1

                                                                                                    (2.1.1)                                          

In the given formula; 

Xi: i. Independent variable 

�̅� : Average of independent variables 

Yi: i. Dependent variable 

�̅� : Average of dependent variable 

N: Number of data 

On the other hand, to deduce if the data sets are in normal distribution, are distributed 

homogeneously or heterogeneously, some descriptive statistics are designated and calculated. 

Descriptive statistics utilized are, total data number (N), smallest value (Xmin), highest value 

(Xmax), average value (�̅�), standard error (Se), standard deviation (σ), variance (Var), skewness 

coefficient (Sc) and kurtosis coefficient (Kc). Pearson’s correlation coefficients for climate data 

sets are given in figure 2.3 and descriptive statistics are given in figure 2.4. From the descriptive 

data sets in figure 2.4, it can be seen that climate data sets are close to normal distribution and 

have a mostly homogenous data value.  
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Figure 2.3. Pearson’s correlation coefficients 

 ETo 
(mm) 

Tmax 

(°C) 
Tmin 
(°C) 

Tavg 

(°C) 
E 

(mm/month) 
Rs 

(cal/cm2) 
Sh 

(hours) 

Reference 
Evapotranspiration 

ETo (mm) 

1 0,924 0,839 0,868 0,925 0,964 0,766 

Max. Temperature  
Tmax (°C) 

0,924 1 0,924 0,957 0,937 0,863 0,806 

Min. Temperature  
Tmin (°C) 

0,839 0,924 1 0,978 0,927 0,792 0,761 

Average 
Temperature 

Tavg (°C) 

0,868 0,957 0,978 1 0,950 0,812 0,785 

 Evaporation 
E (mm/month) 

0,925 0,939 0,927 0,950 1 0,864 0,832 

Global Solar 
Radiation Rs 

(cal/cm2) 

0,964 0,863 0,792 0,812 0,865 1 0,705 

Sunshine Duration 
Sh (hours) 

0,766 0,806 0,761 0,785 0,832 0,705 1 

Figure 2.4. Descriptive statistics 

 r Xmin Xmaxs �̅� Se  σ Var Sc  Kc 

ETo 192,2 24,80 217,00 95,34 2,58 49,82 2 482,46 0,39 -1,08 

Tmax 28,10 12,50 40,60 26,42 0,37 7,18 51,69 -0,09 -1,26 

Tmin 30.67 -13,03 17,63 3,55 0,41 7,96 63,24 0,02 -1,15 

Tavg 27,83 0,00 27,83 14,16 0,39 7,63 58,24 0,01 -1,30 

E 243,53 0,00 243,53 80,59 3,90 75,23 5 660,60 0,35 -1,28 

Rs 599,70 54,30 654,00 291,51 8,15 157,33 24 753,58 0,33 -1,15 

Hs 352,50 4,00 356,50 170,31 4,69 90,61 8 211,57 0,35 -1,1 

 

3. Methodology 

In this study, FAO-56 Penman-Monteith (FAO-56 PM) formula which is used extensively in 

hydrology and Blaney-Criddle empirical formulas, as well as MARS and GMDH machine 

learning methods are used to calculate evapotranspiration. Below the formulas and methods 

are explained. 

3.1. FAO-56 Penman-Monteith Formula (FAO−56 PM) 

Food and Agriculture Organization-56 Penman-Monteith formula is developed by Allen et al. 

(1998). FAO−56 Penman−Monteith (FAO-56 PM) equation is widely accepted to be one of the 

best ways to calculate reference evapotranspiration (ET0) and is extensively utilized (Allen, et 
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al.1998). Daily evapotranspiration values, energy and mass equilibrium-based Penman-

Monteith formula requires climate data such as solar radiation (Rs), average temperature (Tavg), 

wind speed above 2 meters ground level (Sw) and relative humidity (RH). FAO−56 PM equation 

is detailed below (Allen, et al. 1998). 

𝐸𝑇0 =
0.408∆(𝑅𝑛−𝐺)+𝛾

900

𝑇𝑜𝑟𝑡+273
𝑆𝑤(𝑒𝑠−𝑒𝑎)

∆+𝛾(1+0.34∗)𝑆𝑤
                                                                                    (3.1.1) 

In the formula; 

ET0: Daily reference evapotranspiration (mm) 

Rn: Net radiation at crop surface (mJ/m2-day) 

G: Soil heat flux density (mJ/m2-day) 

Tavg: Mean daily temperature (°C) 

Sw: Wind speed at 2 meters high (m/sc) 

es: Saturation vapor pressure (kPa) 

ea: Actual vapor pressure (kPa) 

es-ea: Saturation vapor pressure deficit (kPa) 

Δ: Slope vapor-pressure curve (kPa/°C) 

γ: Psychrometric constant (kPa/°C) 

 

3.2. Blaney-Criddle Formula 

Blaney-Criddle Formula is an empirical formula developed with the information and experience 

gained with studies and experiments made out on the field. Blaney-Criddle formula is based on 

analyzing periods of a given climate and mainly aims to calculate the required irrigation water 

for crops. The formula is given below (Blaney-Criddle, 1950). 

𝑈 = 𝑘 ∗
𝑝∗𝑡′

100
                                                                                                                           (3.2.1) 

In the formula; 

U: Monthly potential evapotranspiration (inch) 

k: Monthly crop irrigation water constant 

p: Rate of monthly morning duration to years morning duration (%) 

t’: Monthly mean temperature (°F) 

 

3.3. MARS Method 

Multivariate Adaptive Regression Splines method, shortened to MARS is a respected method 

in the field of hydrology. With this method, data sets with numerous values can be easily 

processed and meaningful results are able to be obtained (Friedman, 1991). MARS method can 
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be used with both linear and nonlinear approaches (Sharda, et al. 2008). MARS method uses 

basic functions regarding different intervals of variables and builds a flexible regression model 

(Toprak, 2011). The model is detailed below (Nacar, 2020).  

𝑌 = 𝛽0 + ∑ 𝑎𝑖𝛽𝑖(𝑋𝑖) + 𝜀𝑖
𝑁
𝑖=1                                                                                                  (3.3.1) 

In the method; 

i: Number of knots 

N: Number of basic functions (Number of data values) 

Xi: Independent variable 

ai: Basic function coefficient 

β0: Constant 

βi(Xi): Basis function for independent variable 

εi: Error term 

 
In the MARS method, the first step is creating basic functions. Afterwards, independent variables 

and their interactions with each other in those basic functions are determined and generalized 

cross validation is used to find the best results, which are the results with the least mean squared 

error (Ünal, 2009; Uzlu, 2011). 

In the most general sense, basic functions are created as;  

𝐵𝑚(𝑋) = ∏ [𝑆1,𝑚(𝑋𝑣(1,𝑚) − 𝑘1,𝑚)]
𝐿𝑚
𝑖=1                                                                                   (3.3.2) 

In the method; 

Lm: Level of interaction 

S1,m: ∈[±] 

k1,m: Knot value 

Xv(1,m) : Independent variable value 

 

3.4. GMDH Method 
 
Group Method of Data Handling method, shortened to GMDH method is widely used in the field 

of hydrology. The model requires multiple inputs and gives results of a single output, therefore 

in order for the model to work, at least two separate independent variables are needed as inputs. 

GMDH model is classified as a deep learning method and is also known as a polynomial neural 

network method and it is for the first time proposed to solve complicated problems by 

Ivakhnenko (1968). In this method, a relation is built between multiple inputs and a sole output. 

The difference between sum of the squared values of the dependent variable estimated by the 

model and of the observed dependent variable is expected to converge to minimum. Said 

difference can be controlled with the formula below. 
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∑ [𝑓(𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, … . . 𝑥𝑖𝑛) − 𝑦�̂�]
2𝑀

𝑖=1 → 𝑚𝑖𝑛                                                                                                  (3.4.1) 

 
Here; 
 

 𝑓(𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, … . . 𝑥𝑖𝑛) : Vectoral value of each input  
 
𝑦�̂�: Output vector value 

M: Number of inputs and outputs 

 

4. Applications 

In this section, monthly average evapotranspiration is calculated with, in order, FAO-56 

Penman-Monteith, Blaney-Criddle, MARS and GMDH methods. The calculation results are 

given below respectively. 

4.1. FAO-56 Penman-Monteith Formula Evapotranspiration Results 

The monthly average evapotranspiration results obtained with FAO-56 Penman-Monteith 

formula are determined as reference evapotranspiration values. In figure 4.1, 372 data values 

which are obtained by the formula are given. 

Figure 4.1. FAO-56 PM reference evapotranspiration results

Ş 

4.2. Blaney-Criddle Formula Evapotranspiration Results 

Blaney-Criddle Formula utilizes various climate data, including crop irrigation water constant. In 

order to calculate potential evapotranspiration with the formula, a suitable crop irrigation water 

constant needs to be determined. In this study, with study area kept in mind, sunflower crop 

0

20

40

60

80

100

120

140

160

180

200

220

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1
3

1
2
7

1
4
1

1
5
5

1
6
9

1
8
3

1
9
7

2
1
1

2
2
5

2
3
9

2
5
3

2
6
7

2
8
1

2
9
5

3
0
9

3
2
3

3
3
7

3
5
1

3
6
5

ET
o

 (
m

m
)

Time (Month)

Monthly Reference Evapotranspiration (ETo) (mm)

02 September 2024, IISES International Academic Conference, Prague ISBN 978-80-7668-013-5, IISES

49



which are farmed in abundance in Ergene Basin are chosen and data is chosen based on their 

growing season. For this case, Blaney-Criddle formula is used from April until September of 

each year between 1990 and 2020. Basing the calculations in this setup yields 155 data values. 

Results are given in figure 4.2. 

Figure 4.2. Blaney-Criddle Crop Season Potential Evapotranspiration

 

Figure 4.3. Crop Season Reference and Blaney-Criddle Potential Evapotranspiration 

Values 

 

Crop season for each year is determined to be 5 months starting from and including April to and 

including August. From 1990 to 2020, 155 data values in total from 31 years of Blaney-Criddle 

potential evapotranspiration results and reference evapotranspiration values from same time 

frames are given in figure 4.3. According to figure 4.3, reference evapotranspiration values and 

Blaney-Criddle potential evapotranspiration results have a significant difference between them. 
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In order to calculate said difference, a scatter-dot diagram with deformation constant (R2) of the 

comparison is given in figure 4.4. The deformation constant is calculated to be 0,6254 which 

further proves the significance of difference between reference and potential evapotranspiration 

values. 

Figure 4.4. Crop reason reference and Blaney-Criddle potential evapotranspiration 

values comparison 

 

4.3. MARS Method Evapotranspiration Results  

While estimating potential evapotranspiration with MARS method, data sets such as solar 

radiation (Rs), evaporation (E), maximum temperature (Tmaks), average temperature (Tort), 

minimum temperature (Tmin) and sunshine duration (Sh) are put into the model in a feed-forward 

manner in respective order. 
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Figure 4.5. MARS method feed-forward combinations evapotranspiration results

 

As it can be seen from figure 4.5, all combinations yielded similar potential evapotranspiration 

values. 

In figures 4.6, 4.7. 4.8, 4.9, 4.10, and 4.11, all respective combinations results are shown with 

their R2 values in order to find the best combination. 

Figure 4.6. MARS model performance with input as Rs
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Figure 4.7. MARS model performance with inputs as Rs and E

 

Figure 4.8. MARS model performance with inputs as Rs, E and Tmaks

 

R² = 0,9562

0

50

100

150

200

250

0 50 100 150 200 250

E
st

im
at

ed
 E

v
ap

o
tr

an
sp

ir
at

io
n
 (

E
T

m
)(

m
m

)

Reference Evapotranspiration (ETo)(mm)

MARS (Rs+E)

R² = 0,9764

0

50

100

150

200

250

0 50 100 150 200 250

E
st

im
at

ed
 E

v
ap

o
tr

an
sp

ir
at

io
n
 (

E
T

m
)(

m
m

)

Reference Evapotranspiration (ETo)(mm)

MARS (Rs+E+Tmaks)

02 September 2024, IISES International Academic Conference, Prague ISBN 978-80-7668-013-5, IISES

53



Figure 4.9. MARS model performance with inputs as Rs, E, Tmaks and Tort

 

Figure 4.10. MARS model performance with inputs as Rs, E, Tmaks, Tort and Tmin
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Figure 4.11. MARS model performance with inputs as Rs, E, Tmaks, Tort, Tmin and Sh

 

4.3. GMDH Method Evapotranspiration Results 

While estimating potential evapotranspiration with GMDH method, data sets such as solar 

radiation (Rs), evaporation (E), maximum temperature (Tmaks), average temperature (Tort), 

minimum temperature (Tmin) and sunshine duration (Sh) are put into the model in a feed-forward 

manner in respective order. 

Figure 4.12. GMDH method feed-forward combinations evapotranspiration results

 

As it can be seen in figure 4.12, all combinations yield very similar results 

The results of each combination are given in figures 4.12, 4.13, 4.14, 4.15, 4.16 and 4.17. 
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Figure 4.13. GMDH model performance with inputs as Rs and E

 

Figure 4.14. GMDH model performance with inputs as Rs, E and Tmaks
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Figure 4.15. GMDH model performance with inputs as Rs, E, Tmaks and Tort

 

Figure 4.16. GMDH model performance with inputs as Rs, E, Tmaks, Tort and Tmin
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Figure 4.17. GMDH model performance with inputs as Rs, E, Tmaks, Tort, Tmin and Sh

 

4.4. Performance Evaluation Criteria 

In order to compare estimated evapotranspiration results with reference evapotranspiration, 

some performance evaluation criteria are determined. The best model is determined with 

performance evaluation criteria deformation constant (R2), mean squared error (MSE), mean 

absolute error (MAE), average absolute relative error (AARE) respectively. The calculations for 

performance evaluation criteria are given below. 

𝑅2 =
∑ [(𝐸𝑇0)𝑖−𝐸𝑇0̅̅ ̅̅ ̅]2−∑ [(𝐸𝑇0)𝑖−(𝐸𝑇0,𝑒)

𝑖
]

2
𝑁
𝑖=1

𝑁
𝑖=1

∑ [(𝐸𝑇0)𝑖−(𝐸𝑇0,𝑒)
𝑖
]

2
𝑁
𝑖=1

                                                                              (4.4.1)       

𝑀𝑆𝐸 =  
1

𝑁
∑ [(𝐸𝑇0)𝑖 − (𝐸𝑇0,𝑒)

𝑖
]

2
𝑁
𝑖=1                                                                                      (4.4.2)        

𝑀𝐴𝐸 =
∑ |(𝐸𝑇0)𝑖−(𝐸𝑇0,𝑒)

𝑖
|𝑁

𝑖=1

𝑁
                                                                                                      (4.4.3)       

𝐴𝐴𝑅𝐸 =
1

𝑁
∑ |𝑅𝐻|𝑁

𝑖=1                                                                                                             (4.4.4)     

𝑅𝐻 =
(𝐸𝑇0)𝑖−(𝐸𝑇0,𝑒)

𝑖

(𝐸𝑇0)𝑖
100                                                                                                        (4.4.5)     

Here; 

(ET0)i: Reference evapotranspiration (mm) 

(ET0,e)i: Estimated evapotranspiration (mm) 

RH: Relative error (%) 

N: Number of data 
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Figure 4.18. Performance Criteria 

Method R2 MSE MAE AARE 

Blaney-Criddle 0,6254 425,90 16,76 12,85 

 

 

 

MARS 

 

 

 

Combinations  

Rs 0,9347 247,90 12,25 15,83 

Rs+E 0,9566 148,65 9,40 12,21 

Rs+E+Tmaks 0,9764 84,56 7,34 9,58 

Rs+E+Tmaks+Tort 0,9733 88,10 7,46 8,65 

Rs+E+Tmaks+Tort+Tmin 0,9734 86,64 7,26 8,45 

Rs+E+Tmaks+Tort+Tmin+Hs 0,9732 86,63 7,25 8,46 

 

 

 

GMDH 

Combinations  

Rs+E 0,9565 138,68 8,76 11,07 

Rs+E+Tmaks 0,9758 76,73 6,77 9,15 

Rs+E+Tmaks+Tort 0,9776 70,63 6,43 8,69 

Rs+E+Tmaks+Tort+Tmin 0,9792 65,70 6,17 8,07 

Rs+E+Tmaks+Tort+Tmin+Hs 0,9846 49,07 5,56 7,23 

 

In figure 4.18, methods used in this study are evaluated with specified performance criteria and 

the best results is marked with bold text. 

5. Results 

The reference evapotranspiration values obtained with FAO-56 PM empirical formula are 

compared with potential evapotranspiration results obtained with various models in this study. 

Reference evapotranspiration is compared 12 models in total, 5 of them belonging to GMDH 

method, 6 of them belonging to MARS method and the last one being the Blaney-Criddle 

empirical method. 

In figure 4.4, Blaney-Criddle formula only yielded 62,54% correlation while the rest of the models 

all yielded correlations above 90%. This was expected within the aim of the study and further 

proved the success of machine learning methods over standard empirical methods. 

Among machine learning methods, the best correlation was found to be 98,46% with GMDH 

method using Rs, E, Tmax, Tavg, Tmin and Sh data sets as seen in figure 4.17. This amount of 

correlation is regarded as very high and proves this model can be safely used to determine the 

amount of potential evapotranspiration. 

However, the initial scope of this study is acquiring a successful model with the least amount of 

data sets as possible. While increasing the amount of data sets for both MARS and GMDH 

methods generally further improved the models, it can be seen from figure 4.18 that even with 

limited data, all models yielded strong correlation levels, with the least successful model yielding 

a 93,47% correlation and the rest of the models yielding correlation levels above 95%. 

Therefore, it is fair to say all models presented in this study are suitable for estimating potential 

evapotranspiration. 
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