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Abstract:
This study examines the application of Bayesian Symbolic Regression (BSR) for in-sample modelling
of various commodities spot prices. The studied method is a novel one, and it shows promising
potential as a forecasting tool. Additionally, BSR offers capabilities for handling variable selection
(feature selection) challenges in econometric modeling. The focus of the presented research is to
analyze the suitable selection of the initial parameters for BSR in the context of modelling
commodities spot prices. Generally, it is a challenge for (conventional) symbolic regression to
properly specify the set of operators (functions). Here, the analysis is primarily focused on specific
time-series, making the presented considerations especially tailored to time-series representing
commodities markets. The analysis is done with an aim to assess the ability of BSR to fit the
observed data effectively. The out-of-sample forecasting performance analysis is deferred for
investigations elsewhere. Herein, the main objective is to analyze how the selection of initial
parameters impacts the accuracy of the BSR model. Indeed, the already known simulations were
based on synthetic data. Therefore, herein real-word data from commodities markets are used. The
outcomes can be useful for researchers and practitioners further interested in econometric and
financial applications of BSR. (Research funded by the grant of the National Science Centre, Poland,
under the contract number DEC-2018/31/B/HS4/02021.)
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1 Introduction 

Forecasting commodities spot prices is a complex task, addressing two main challenges. Firstly, 

over the years, researchers have identified numerous potential drivers of commodities prices, 

including supply and demand factors, exchange rates, financial market interactions, speculative 

pressures, various uncertainty indices, etc. Consequently, selecting the most relevant variables 

(feature selection) when constructing an econometric model, such as multilinear regression, has 

become a challenging task (Chen et al., 2010; Gargano and Timmermann, 2014; Salisu et al., 

2019; Steermer, 2018).  

The second problem is that the impact of specific drivers on a commodity price can vary across 

different time periods, leading to a time-varying nature of the model’s parameters and structure 

(Huang et al., 2021). Moreover, the functional form specification of the model needs to account 

for non-linear effects and the complicated market structure (Caginalp and DeSantis, 2011).  

Symbolic regression offers a solution to these challenges. It begins with creating a set of 

operators (functions) and then employs evolutionary processes like crossover, mutation, and 

selection to discover a suitable functional form for the model (Koza, 1998). Symbolic regression is 

a form of regression analysis that aims to discover an explicit mathematical expression or 

equation that best fits a given dataset. Unlike traditional regression methods that rely on pre-

defined functional forms (e.g., linear, quadratic), symbolic regression is more flexible and allows 

the model to find the most suitable mathematical structure and coefficients directly from the data. 

In symbolic regression, the algorithm searches through a space of mathematical expressions 

using techniques inspired by evolutionary algorithms, such as genetic programming. It starts with 

a population of randomly generated mathematical expressions, represented as trees of 

mathematical operators and variables. These expressions are then evaluated based on how well 

they fit the training data using a specified fitness function. The evolutionary process involves 

iteratively selecting the best-performing expressions from the population, applying genetic 

operations like crossover and mutation to create new variations, and repeating the evaluation and 

selection steps until a stopping criterion is met. Over successive generations, the algorithm tends 

to converge towards a mathematical expression that provides the best fit to the data while also 

being interpretable (Koza, 1998). 

Conventionally, symbolic regression has used genetic algorithms for this purpose. However, a 

more recent approach, i.e, Bayesian Symbolic Regression (BSR), was proposed by Jin et al. 

(2019). It replaces genetic algorithms with Bayesian symbolic trees. This method replaces 

evolutionary processes with Bayesian prior-posterior inference and is claimed to result in better 

predictions and to be computationally more efficient.  

Herein, this novel method is employed to in-sample fit spot prices of 56 commodities and various 

specifications of this method are studied. 

2 Methodology and Data 

Bayesian symbolic regression (BSR) proposed by Jin et al. (2019) represents a novel approach to 

symbolic regression designed to address challenges faced by traditional methods, such as 

difficulties in integrating prior knowledge into genetic programming, complexities arising from 

outcome expression, and reduced interpretability. These issues have been well-documented in 

existing approaches to symbolic regression (Korns, 2011). BSR offers a promising solution to 
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these problems, aiming to improve the efficiency and interpretability of symbolic regression 

models. 

Herein, the in-sample analysis is performed. The reason for that is primarily to focus on analysing 

how the specification of certain parameters can impact the data fitting. Indeed, the researcher 

must specify certain initial parameters to BSR, but even in case of the genetic algorithm based 

symbolic regression this is not an easy task (Nicolau and Agapitos, 2021). As a result, this study 

focuses on comparing different BSR models applied to 56 different commodities spot prices. This 

makes it particularly tailored to specific time-series. As a result, further studies can use these real-

market simulations outcomes for further elaborations. The evaluation of out-of-sample forecasting 

with BSR is reserved for other studies. For example, an application to forecasting crude oil spot 

price can be found in the paper by Drachal (2023).  

Another crucial aspect of BSR is its emphasis on improving the interpretability of the derived 

expressions. To achieve this goal, the method aims to capture concise yet informative signals 

with a linear and additive structure. Prior distributions are employed to control the complexity of 

the symbolic trees, a representation commonly used in similar problems (Weiss, 2014). The core 

of BSR lies in Markov Chain Monte Carlo (MCMC) sampling, which generates symbolic trees 

from the posterior distribution. Although computationally intensive, Jin et al. (2019) demonstrated 

that this method can even enhance memory usage in computer computations compared to 

standard genetic programming approaches for symbolic regression. However, simulations 

conducted by Jin et al. (2019) were based on synthetic data, therefore this paper tries to fill the 

literature gap and focuses on very specific real-market, i.e, commodities one. The obtained 

outcomes can be helpful for researchers willing to apply BSR further in forecasting and analysing 

commodities prices time-series, as this time-series possess quite specific features (Kent Baker et 

al., 2018).  

 A quick sketch of BSR is presented below. Details can be found in the original paper by 

Jin et al. (2019). Let yt be the forecasted commodity spot price (possibly transformed, for 

example, into logarithmic differences). In particular, Brent, Dubai and WTI crude oil, Australian 

and South African coal, U.S. and European natural gas and Japan liquefied natural gas , cocoa, 

Arabica and Robusta coffee, Colombo, Kolkata and Mombasa tea, coconut oil, groundnuts,  fish 

meal, palm oil, soybeans, soybean oil, soybean meal, maize, Thai 5% broken rice, U.S. soft red 

winter and hard red winter wheat, U.S. bananas, orange, beef, chicken meat, Mexican shrimps, 

European, U.S. and world sugar, U.S. import tobacco, Cameroon and Malaysian logs, Malaysian 

sawnwood, plywood, cotton (A index), Singapore traded rubber, phosphate rock, diammonium 

phosphate, triple superphosphate, urea, potassium chloride, aluminium, iron ore, copper, lead, 

tin, nickel, zinc, gold, platinum and silver spot prices were taken (The World Bank, 2022).  

Let x1,t, …, xn,t be the explanatory variables. Following, Gargano and Timmermann (2014) 

and Drachal (2018) dividend to price ratio (Schiller, 2022), U.S. 3-month treasury bills secondary 

market rate representing short-term rate and U.S. long-term government 10-year bond yields 

representing long-term rate, term spread (i.e., the difference between the long-term rate of U.S. 

bonds and U.S. treasury bill rate), default return spread (i.e., the difference between U.S. long-

term corporate bonds yield and U.S. treasury bill rate, where long-term corporate bond yield was 

taken as the index based on bonds with maturities 20-years and above), U.S. Consumer Price 

Index (transformed into logarithmic differences), U.S. industrial production (transformed into 

logarithmic differences), U.S. M1 money stock (transformed into logarithmic differences), Kilian 

global economic activity index, U.S. unemployment rate, Australian dollar to U.S. dollar exchange 
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rate (transformed into logarithmic differences), Indian rupee to U.S. dollar exchange rate 

(transformed into logarithmic differences), S&P GSCI Commodity Total Return Index (transformed 

into logarithmic differences) and U.S. dollar open interest (transformed into logarithmic 

differences) were taken (Bloomberg, 2022; Commodity Futures Trading Commission, 2022; 

FRED, 2022).  

Then, the following equation is considered yt = β0 + β1 * f1(x1,1,t-1, …, x1,i,t-1) + … + βK * 

fk(xK,1,t-1, …, xK,i,t-1), with xi,j,t standing for some of the explanatory variables out of some n available 

ones (herein, n = 14) which are present in the i-th component expression, i.e., fi, with j = { 1, …, n 

} and i = { 1, …, K }. The number of components, K, is fixed and must be set up at the initial 

stage, whereas coefficients βi are estimated by the Ordinary Least Squares linear regression 

method. Jin et al. (2019) claimed that higher values of K result in higher forecast accuracy, but 

that this increment diminishes with the further growth of the parameter K. Herein, K = {1, 2, …, 10 

} were tested.   

Component expressions fi are represented by symbolic trees (Weiss, 2014) constructed from 

some set of operators, such as, for example +, *, 1 / x, etc. Nicolau and Agapitos (2018) and 

Keijzer (2004) noticed that even for the genetic algorithm based symbolic regression the optimal 

selection of this set is not an easy task. Therefore, herein, 6 different sets were studied. F = 1 

represents the set consisting of unary neg(xi,t) = - xi,t and binary add(xi,t,xj,t) = xi,t + xj,t operators. F 

= 2 represents as for F = 1, but expanded by unary square(xi,t) = (xi,t)2. F = 3 represents as for F = 

1, but expanded by unary 12-periods back moving average, i.e., ma12(xi,t) = (xi,t + xi,t-11) / 12, and 

unary lag(xi,t) = xi,t-1. F = 4 represents as for F = 2, but expanded by binary mul(xi,t,xj,t) = xi,t * xj,t. F 

= 5 represents as for F = 4, but expended by unary inv(xi,t) = 1 / xi,t, unary cubic(xi,t) = (xi,t)3, unary 

sqrt(xi,t) = xi,t, unary log(xi,t) = ln(|xi,t|), unary ma12 and unary lag. F = 6 represents as for F = 1, 

but expanded by the unary operator lt(xi,t) = a * xi,t + b, with a and b being some real numbers. 

Following Nicolau and Agapitos (2018) and Keijzer (2004) this operator can improve the set of 

obtained expressions. The selection of various F was based on potential usefulness for modelling 

economic time-series and to have some economic motivation. Also the aim was to consider small 

and big set of operators.  

The Bayesian inference takes over the symbolic trees representing the expressions. A symbolic 

tree is represented by g( · ; T, M, ϴ) with g representing a function as above, i.e., g = f1 + … + fk 

and T – the set of nodes, M – nodes’ features, and ϴ – parameters. Uniform priors are taken at 

the initial stage. A node feature represents whether the given node is a terminal one, or extends 

to one child node, or splits into two child nodes. The probabilities of these transformations were 

taken as in the paper by Jin et al. (2019). Priors for a and b for operators lt were Gaussian and 

centred around the identity function, also following Jin et al. (2019). The prior-posterior inferences 

of the entire model were performed with Metropolis-Hastings algorithm (Jin et al., 2019). 50 

iterations were performed as advised by Jin et al. (2019).  

432 observations were used, as the data set spans from January 1986 to January 2022. (Monthly 

frequency was used.) Additionally to the previously stated transformations, time-series were 

further standardized before inserting into the BSR. Explanatory variables were also lagged 1 

period back. Computations were done in Python and R (Jin, 2021; R Core Team, 2018; Van 

Rossum and Drake, 1995). 

Evaluation was done with respect to the raw time-series of commodities prices, i.e., BSRs 

forecasts were scaled back from standardization and logarithmic transformation before the 

evaluation. In particular, Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean 
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Absolute Scaled Error (MASE) were considered (Hyndman and Koehler, 2006). Model 

Confidence Set (MCS) was also employed (Hansen et al., 2011).  

3 Results 

For each commodity, the BSR model minimizing RMSE was chosen. Figure 1 presents 

frequencies of parameters K and F of the models selected in such a way. It can be seen that,  

findings by Jin et al. (2019) can be confirmed. In other words, errors tend to smaller with higher 

values of K. However, this cannot be taken as a general rule. Secondly, the simplest set of 

operators is rarely selected. Sets with more operators, especially the one consisting of neg, add,  

ma12 and lag operators are preferred. These are typical operators used in financial time-series 

analyses. But also the sets connected with some scaling transformations and possible non-linear 

effects are often selected. Despite the fact that the data were already transformed before 

inserting into the BSR models, the specific features of commodities markets time-series are still 

detected.  

Moreover, there is no much discrepancy between the outcomes based on the analysis of RMSE, 

MAE and MASE. Therefore, to keep the paper concise, mostly the outcomes based on RMSE are 

reported. Indeed, in case of 50% of commodities the selected values of K and F were exactly the 

same for RMSE, MAE and MASE.  

 

Figure 1 Frequencies of selected BSR parameters for models minimizing RMSE 

  

Source Own estimation  
 

Figure 2 presents inverses of MASEs averaged over all analyzed commodities for fixed K and 

fixed F. (Therefore, bigger circle is preferred.) Unfortunately, there is no clear pattern visible. 

However, K = 7 and F = 6 results with smallest MASE on average.  

Next, for every commodity, MCS with 90% confidence level, 1000 bootstrapped samples and 

“TR” statistic (Hansen et al., 2011) was performed for forecasts for all values of K and F (i.e., for 

10 * 6 = 60 models). First, it was checked how many models survived MCS procedure for each 

commodity. From Figure 3 it can be seen that in many cases relatively large number of models 

remained. However, also for a reasonable number of models, MCS procedure was quite harsh 

and excluded some models. This means that, indeed, in certain cases the proper selection of K 

and F is significant, but in some cases it actually does not matter much which values of 

parameters are taken, as the differences in the obtained forecasts are statistically not significant. 

Also none of the specification is clearly superior over others, neither any one can be definitely 

excluded. The least frequently remaining model still remained for 16 commodities, and the one 
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most often surviving remained for 33 commodities. Indeed, Figure 4 presents how often models 

with a given K (or a given F) survived MCS procedure. The pictures are rather flat showing no 

clear tendency towards any preferred value of K or F, being rather uniformly distributed. Figure 5 

presents the overall picture.  

 

Figure 2 Inverses of MASEs averaged over analyzed commodities 

 

 

Source Own estimation  

Figure 3 Number of commodities for which a given number of BSR models with different K 

and F parameters survived MCS procedure 

 

 

Source Own estimation  
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Figure 4 Frequencies of survival MCS procedure by various BSR models with different K 

and F parameters (one parameter is fixed)  

  
 

 

Source Own estimation  
 

Figure 5 Frequencies of survival MCS procedure by various BSR models with different K 

and F parameters (bigger circles are preferred)  

 

 

 

 

Source Own estimation  
 

Finally, seeing from Figure 4 that the BSR specification with K = 9 and F = 3 is most commonly 

left by MCS procedure, it can be asked if forecasts from BSR with this specification, indeed, 

significantly differ from those from the models with the specification which minimized RMSE for a 

given commodity. This was checked with Diebold-Mariano test (Diebold and Mariano, 1995). The 

null hypothesis of the test is that forecasts from both models have the same accuracy. The 

alternative – that the one from the model minimizing RMSE has greater accuracy. At 5% 

significance level, the null hypothesis was rejected only for 18 commodities. Figure 6 presents p-

values for all commodities. 
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Figure 6 P-values from Diebold-Mariano test (dotted line corresponds to 5% significance 

level) 

 

 

 

 

Source Own estimation  

 

Table 1 P-values from Diebold-Mariano test (K fixed) 
 

F = 2 F = 3 F = 4 F = 5 F = 6 

K = 1 0.5515 0.5178 0.5617 0.5501 0.4544 

K = 2 0.6422 0.4991 0.5482 0.6229 0.4869 

K = 3 0.5382 0.6192 0.6340 0.7056 0.5326 

K = 4 0.5693 0.5425 0.6818 0.6513 0.4860 

K = 5 0.6568 0.5262 0.7066 0.6840 0.4768 

K = 6 0.6566 0.5501 0.7179 0.6818 0.5139 

K = 7 0.6307 0.4884 0.6818 0.6950 0.5233 

K = 8 0.6234 0.4966 0.6915 0.6836 0.5492 

K = 9 0.5620 0.4895 0.6539 0.6979 0.4455 

K = 10 0.6894 0.5060 0.6512 0.7189 0.4922 
 

 

Source Own estimation  

 

Table 1 presents p-values from Diebold-Mariano test averaged over commodities, performed in 

the following way. For every commodity and for every parameter K, for every F = { 2, …, 6 } the 

forecast from a BSR model with the given K and F was tested against the one from the model 

with the same K, but with F = 1 (i.e., from the model with the simplest set of operators). The 

alternative hypothesis was that the forecast from the model with F = 1 is less accurate. High p-

values suggest that there is little evidence to treat the simplest set of operators as leading to 

statistically significantly less accurate forecasts under the same specification of the parameter K. 

In other words, if the parameter K is already set, then choosing a set of operators has small 

impact on the accuracy of the obtained forecast. The more deep analysis showed that the null 

hypothesis was rejected only in approximately 7% of individual cases, if 5% significance level was 

assumed; and in approximately 12% cases, if 10% was assumed.  

Finally, for robustness check, it can be interesting to consider if, instead of 432 observations, as it 

was taken, the repetition of the above analysis with, for example, the only first 100 observations, 
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would lead to the similar conclusions. In short, in such a case RMSE was not minimized by the 

models with exactly the same K and F parameters for every commodity. Although, for a 

reasonable number of them, it was. However, in case of the parameter K, for the majority of 

commodities this parameter in both cases took quite close values. Rarely, the model based on 

the first 100 observations from the sample taken herein, and the model based on all 432 

observations, minimizing RMSE, would have very different than each other parameter K (i.e., 

differing by more or less than 1 or 2 units).   

4 Conclusions  

When applying the novel Bayesian Symbolic Regression (BSR) to modelling or forecasting 

commodities spot prices, there is no one, particular set of initial parameters and operators set that 

can be roughly suggested to employ. However, in general, the higher value of the admissible 

number of components in linear regression expression can lower errors of the model. Secondly, 

inclusion of moving average and lagging operators seem to be slightly more useful, than some 

operators dealing with non-linear effects. Surprisingly, for quite many commodities, under the 

fixed specification of the number of linear regression components, even taking only some very 

simple operators does not lead to statistically significantly less accurate forecasts, than if more 

rich set of operators would be taken.  

Depending on computational resources, a researcher should either consider quite a rich set of 

operators (e.g., dealing with moving averages, lagging, non-linearity, etc.), or narrow to just some 

small simple set of operators. However, in case of the number of admissible linear regression 

components, this number should not be taken too small. For practical applications, it would be a 

good advice to perform some initial training period simulations on some first observations from 

the analyzed sample, to select these parameters for estimations and forecasting over the whole 

sample. The issues with suitable selection of the set of operators seem to be more challenging 

than the selection of the number of admissible linear regression components.  
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