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Abstract:
This paper investigates the determinants of carbon intensity across various economic sectors in the
European Union, focusing on the period that already considers transition policies under the Paris
Agreement and the Fit-for-55 initiative. As sectors exhibit diverging emission levels and transition
policy implications, understanding the factors influencing carbon intensity has become increasingly
relevant. We employ a panel regression analysis using data from 2014 to 2022, examining variables
such as brown energy consumption share, total factor productivity, gross value added, employment
metrics, energy prices, and environmental taxes. Our findings reveal that carbon intensity is
influenced by a complex interplay of factors, with significant variations across sectors. Notably,
sectors with high reliance on brown energy show a stronger correlation with carbon intensity levels.
The results underscore the necessity for tailored transition policies that consider sector-specific
characteristics to effectively reduce carbon emissions within the EU. Furthermore, the study
highlights the importance of integrating economic and environmental policies to foster a sustainable
transition, providing valuable insights for policymakers aiming to achieve climate targets.
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Introduction 

 
The Paris Agreement and the EU's Fit-for-55 initiative represent pivotal frameworks aimed at 
mitigating climate change by reducing greenhouse gas emissions. Transition policies are 
essential to achieve these ambitious targets, and a plethora of studies has emerged analysing 
their effectiveness. For instance, the European Union is committed to steering its economy 
away from high-carbon and pollution-intensive production toward climate-neutral technologies 
by 2050, emphasizing the need for a just transition that supports regions and sectors most 
affected by these changes (Vona, 2021). 

Recent research underscores the importance of sectoral analysis in understanding the climate 

impact of these policies, as emissions levels and transition policy implications diverge 

significantly across different sectors. For example, the Climate Chance Observatory's Global 

Synthesis Report highlights that sector-specific strategies can lead to substantial reductions 

in CO2 emissions, indicating that tailored approaches are necessary for effective climate 

action (Climate Chance Observatory, 2023). This study aims to contribute to this growing body 

of research by investigating the factors influencing carbon intensity across various economic 

sectors in the EU. 

Carbon intensity, defined as the amount of carbon dioxide emissions per unit of economic 

output, has become a key indicator in assessing the effectiveness of climate policies. This 

metric allows for the evaluation of how efficiently an economy produces goods and services 

while managing its carbon emissions. The United Nations Environment Programme (UNEP) 

emphasizes that monitoring carbon intensity is crucial for understanding progress in reducing 

greenhouse gas emissions and achieving climate targets (UNEP, 2023). Numerous studies 

have utilized carbon intensity to evaluate emissions forecasts and the impact of transition 

policies. For example, the EU Emission Trading Scheme (ETS) plays a crucial role in 

determining carbon prices for energy-intensive industries, influencing their carbon intensity 

(Delbeke, 2021). 

This study hypothesizes that carbon intensity is influenced by a complex interplay of factors, 

including the share of brown energy consumption, total factor productivity, gross value added, 

employment levels, energy prices, environmental taxes, and climate variables such as heating 

and cooling days. By employing a panel regression analysis using data from EU countries 

from 2014 to 2022, we aim to identify the most significant determinants of carbon intensity 

across different sectors. The aim of this research is to contribute to the development of tailored 

transition policies and transmission channels for assessment tools both considering sector-

specific characteristics and effectively reduce carbon emissions within the EU. 

The remainder of this paper is organized as follows: Section 2 reviews the existing literature 

and develops the hypotheses. Section 3 describes the data and methodology used in the 

analysis. Section 4 presents the results and discusses the findings. Section 5 outlines the 

extensions and robustness tests conducted. Finally, Section 6 concludes the paper and 

suggests avenues for future research. 

 

Existing Literature and Hypotheses Development 

 

Research indicates that several factors significantly affect carbon intensity. A key component 
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is total factor productivity (TFP), which serves as a measure of technological advancement. 

Improvements in TFP can lead to lower carbon emissions per unit of output, thus reducing 

carbon intensity. Studies suggest that higher productivity is often associated with cleaner 

technologies and more efficient energy use (Zhou et al., 2023). Economic output influences 

carbon intensity, as sectors with higher gross value added may exhibit different emissions 

profiles depending on their energy consumption patterns (Khan et al., 2023). Additionally, 

population size, energy consumption, and industrial structure are critical factors affecting 

carbon emissions in various regions (Ma et al., 2013; Pan et al., 2017). 

In the context of China, for example, Zhao et al. (2020) found that the energy structure has 

the greatest impact on carbon intensity, followed by demographic factors like total population 

and urbanization rate, as well as economic factors such as industrial structure and GDP per 

capita. Similarly, the study by Song et al. (2020) highlights that the industrial sector is the 

primary contributor to carbon emissions, accounting for a significant proportion of total 

emissions in regions with high coal dependence. This underscores the necessity of optimizing 

energy structures and transitioning towards cleaner energy sources to effectively reduce 

carbon intensity. 

Findings from non-EU countries further support the relevance of these factors. For instance, 

research conducted in the United States indicates that states with higher renewable energy 

shares experience lower carbon intensity levels, reinforcing the importance of transitioning to 

cleaner energy sources (Liu et al., 2023). In India, the electricity, gas, and water supply sector 

has been identified as a major contributor to carbon emissions, emphasizing the need for 

targeted policies to address high-carbon sectors (Sun, 2020). 

Panel fixed effects regression models have been widely utilized in climate studies to analyze 

the impact of various factors on carbon intensity across different sectors. For example, studies 

have shown that fixed effects models effectively control for unobserved heterogeneity and 

time-invariant characteristics, allowing researchers to isolate the effects of time-varying 

variables on carbon emissions (Edokpayi et al., 2018). The use of panel data enables 

researchers to capture the dynamic relationships between climate variables and economic 

outcomes, providing insights into the causal mechanisms at play (Blanc and Schlenker, 2020). 

In terms of modelling approaches, recent literature suggests that panel models can be 

effective in assessing the causality between various factors and carbon intensity across 

sectors and countries. For example, Khan et al. (2019) use a panel regression approach to 

investigate the impact of environmental regulations on firm-level productivity and emissions, 

providing insights into the mechanisms through which policy interventions can influence 

carbon intensity. 

The findings from these studies collectively highlight the need for a more comprehensive 

approach to modelling carbon intensity, incorporating a broader range of factors and 

considering the complex interactions between economic agents, policies, and the 

environment. This research aims to contribute to this growing body of literature by employing 

a panel regression framework to identify the key determinants of carbon intensity across 

economic sectors in the EU, providing valuable insights for policymakers and modelers alike. 
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Data and Methodology 

 

Collected data and characteristics 

This study examines the determinants of carbon intensity (CO2 emissions) across 21 

economic sectors1 and 27 EU member states from 2014 to 2022. Using data from Eurostat 

and focusing on the period following the Paris Agreement, the analysis considers factors such 

as energy usage, technological advancements, labour intensity, market conditions, policy 

actions, and weather metrics. While most data series are available from 2008 onwards, energy 

usage data is only available from 2014. 

Variables include2: 

• Brown Energy Share (brwn_shr): Proportion of energy consumption from non-

renewable sources, calculated by subtracting electricity, nuclear, and renewable 

energy from total energy consumption. 

• Gross Value Added (gva): Economic contribution of each sector, measured in 

million EUR. 

• CO2 Emissions (emissions): Total carbon dioxide emissions, the primary indicator 

of carbon intensity, measured in billion tonnes. 

• Employment Metrics (employment): Labour intensity, measured in thousand hours 

worked. 

• Energy Prices (electricity_price and gas_price): Prices for electricity and gas for 

small to mid-sized enterprises, measured in EUR per MWh and EUR per GJ, 

respectively. 

• Environmental Taxes (environmental_tax): Fiscal measures implemented to 

influence environmental outcomes, measured in million EUR. 

• Weather Variables (heating_days and cooling_days): Number of days requiring 

heating or cooling, capturing extreme weather impacts. 

• Total Factor Productivity Growth (tfp)3: Productivity changes, calculated as the 

difference between GVA growth and weighted labor and capital productivity growth, 

expressed as a percentage. 

 
1 Statistical Classification of Economic Activities in the European Community (NACE) level (see Appendix 1). 
2 All variables are available at the sectoral level, except for market conditions and weather metrics, which are 

observed at the country level. 
3 Calculation of total factor productivity from Eurostat observed data is as follows: 

TFP Growth=GVA Growth−(α×Labour Productivity Growth+β×Capital Productivity Growth), where Labour 

Productivity Growth is Real labour productivity per hour worked, α is the share of compensation of employees in 

total output, Capital Productivity Growth is productivity of net fixed assets in relation to GVA and β is the share of 

operating surplus in total output. 
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Due to limited data for sectors J, K, M, N, Q, R, S, and U, these were excluded. The study 

provides a detailed view of the factors affecting carbon intensity across the EU, considering 

macroeconomic differences. 

Sector-level data 

The analysis reveals significant sectoral differences in energy intensity, CO2 emissions, 

economic contribution, and brown energy usage across the EU. The Electricity, Gas, Steam, 

and Air Conditioning Supply sector (Sector D) has the highest energy intensity, though it has 

reduced from 5.93 in 2008 to 2.14 in 2022. Sectors like Financial and Insurance Activities 

(Sector K) and Real Estate Activities (Sector L) show lower energy intensities. The trend 

overall is a gradual reduction in energy intensity, signaling progress in efficiency. The 

Manufacturing sector (Sector C) remains the largest economic contributor, while information 

and communication sectors show substantial growth, highlighting the digital economy's rise. 

Figure 1: Energy intensity and GVA development by sector 

 

CO2 emissions data highlight the Electricity, Gas, Steam, and Air Conditioning Supply sector 

(Sector D) as the largest emitter, with emissions decreasing from 1.16 billion tonnes in 2008 

to 0.73 billion tonnes in 2022. The Manufacturing (Sector C) and Transportation and Storage 

(Sector H) sectors have also reduced emissions but remain significant contributors. Despite 

these reductions, more progress is needed to meet climate targets. Brown energy usage 

shows that sectors like Transportation and Storage (Sector H) and Construction (Sector F) 

heavily depend on non-renewable energy, with Manufacturing (Sector C) also relying 

significantly on brown energy. The transition to sustainable sources remains a challenge, 

though Sector D has made some progress in reducing its brown energy dependence. 

Figure 2: Emissions and “brown” energy usage development by sector 
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The analysis underscores the need for sector-specific policies and interventions to address 

the unique challenges each sector faces in transitioning to a more sustainable and low-carbon 

economy. The varying levels of energy intensity, emissions, and brown energy reliance across 

sectors highlight the complexity of achieving broad-based improvements in energy efficiency 

and carbon reduction. 

 

Methodology 

To examine the effects of various observed variables on energy intensity, we specify the 

following dynamic panel data model using the Instrumental Variables Generalized Method of 

Moments (IV-GMM) estimation: 

𝐼𝑗,𝑘,𝑡 = 𝛼𝐼𝑗,𝑘,𝑡−1 + 𝛽𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠𝑗,𝑘,𝑡 + 𝛾𝑋𝑗,𝑘,𝑡 + 𝛿𝑍𝑘,𝑡−1 + 𝜆𝑗 + 𝜃𝑡 + 𝜖𝑗,𝑘,𝑡 

where 𝐼𝑗,𝑘,𝑡 presents energy intensity in sector j, country k, and time t. The term 𝐼𝑗,𝑘,𝑡−1 is the 

lagged dependent variable, included to capture the autoregressive process. The observed 
variables 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠𝑗,𝑘,𝑡 include factors such as brown energy share, gross value added (GVA), 

CO2 emissions, employment metrics, energy prices (electricity and gas), environmental taxes, 
and weather variables (cooling and heating days). 𝑋𝑗,𝑘,𝑡 includes contemporaneous variables, 

and 𝑍𝑘,𝑡−1 contains lagged exogenous variables. The fixed effects for sectors (const) and time 

periods are captured by 𝜆𝑗 and 𝜃𝑡, respectively, while 𝜖𝑗,𝑘,𝑡 is the error term. 

The IV-GMM model was chosen for its ability to address potential endogeneity issues, 
particularly those associated with lagged variables. This method helps mitigate biases from 
omitted variables and reverse causality, which are common in panel data regressions 
(Arellano and Bond, 1991; Wooldridge, 2010). The inclusion of the lagged dependent variable 
highlights the model’s dynamic nature, reflecting the persistence of energy intensity over time. 
This approach recognizes that historical energy use significantly affects current levels, 
providing a more accurate assessment of energy intensity trends (Blundell and Bond, 1998). 

In addition, we analyse energy efficiency changes using a similar model structure without the 
autoregressive term. This approach allows us to focus on short-term variations and immediate 
responses to recent policy measures, rather than long-term persistence captured by the 
lagged variable (Roodman, 2009). The choice of the IV-GMM method is particularly suitable 
for our small T and small N panel data, addressing endogeneity concerns and potential biases 
from environmental regulations (Levinsohn and Petrin, 2003). By concentrating on sector-level 
data, our analysis reduces endogeneity issues that are more pronounced in macro-level 
studies, making our findings more relevant and reliable for policy evaluation (Hsiao, 2003). 

 

Results and Findings 
 

The results are summarised in Tabel 1 indicating that the level-based models with a lagged 
dependent variable outperform the delta-based models in terms of explanatory power and 
significance of coefficients across most sectors.  

The analysis of energy intensity across various sectors reveals distinct patterns and drivers 
that shape energy efficiency outcomes. In Agriculture, Forestry, and Fishing (Sector A), energy 
intensity is notably reduced, with environmental taxes and emission controls emerging as 
effective drivers of efficiency improvements. This sector’s responsiveness to such measures 
highlights the role of regulatory interventions in fostering energy savings. Mining and 
Quarrying (Sector B) exhibits high energy intensity, where emissions and GVA are significant 
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factors. The strong correlation between emissions and energy intensity underscores the 
urgent need for targeted emission reduction strategies to manage energy use effectively in 
this sector. Manufacturing (Sector C) shows moderate energy intensity, influenced by GVA and 
emissions, with brown energy usage playing a significant role. This indicates that a shift 
towards cleaner energy sources and further emissions reductions could enhance energy 
efficiency. The Electricity, Gas, Steam, and Air Conditioning Supply sector (Sector D) has high 
energy intensity, driven by GVA, share of brown energy and electricity prices. Its sensitivity to 
electricity prices emphasizes the importance of pricing policies in promoting energy efficiency, 
alongside potential benefits from cleaner energy solutions. Water Supply, Sewerage, Waste 
Management, and Remediation Activities (Sector E) also demonstrates moderately high 
energy intensity, with brown energy usage and emissions being crucial factors. Finally, 
Transportation and Storage (Sector H) reveals high energy intensity with a strong link to brown 
energy usage, underscoring the need for cleaner energy alternatives. Overall, emissions, 
GVA, and brown energy usage are key determinants of energy intensity, with reductions in 
emissions and a transition to cleaner energy sources emerging as pivotal strategies for 
improving energy efficiency. 

When looking at the delta energy intensity, or the change in energy intensity, we can draw 
some similarities, but there are new factors that have a significant effect. TFP generally 
exhibits a significant negative relationship with energy intensity across most sectors, indicating 
that productivity improvements lead to more efficient energy use. This underscores the role of 
technological advancements and efficiency enhancements in reducing energy intensity. 
Conversely, the impact of delta brown share, or the proportion of non-renewable energy 
sources, varies by sector; in some cases, such as in Sectors B and E, an increase in brown 
energy share correlates with higher energy intensity, highlighting the need for cleaner energy 
transitions. The effects of energy prices on energy intensity are mixed; while higher gas prices 
can reduce energy intensity by encouraging more efficient consumption, this effect is not 
consistent across all sectors. Environmental taxes generally correlate with lower energy 
intensity, suggesting that these taxes effectively promote energy efficiency by incentivizing 
reductions in energy consumption and emissions. 

Table 1: Summary of GMM models results  

GMM model with the lagged dependant variable – Energy intensity as the dependent variable 

Variable/Sector A B C D E F G H I L O P 

lagged_energy_int
ensity 

0.7422***  
(0.1010) 

0.9024***  
(0.0487) 

0.8128***  
(0.0484) 

0.7675***  
(0.0725) 

0.7430***  
(0.0599) 

0.8687***  
(0.0333) 

0.6192***  
(0.1299) 

0.5592***  
(0.0571) 

0.7347*** 
(0.0949) 

0.5934*** 
(0.0773) 

0.6626*** 
(0.0780) 

0.6545*** 
(0.0685) 

const 

0.0880*  
(0.0416) 

0.3470***  
(0.1103) 

0.1132**  
(0.0422)     

-0.0514*  
(0.0228) 

0.0299***  
(0.0101) 

-1.6279**  
(0.5552) 

0.0272*** 
(0.0102)    

0.0056* 
(0.0030) 

brwn_shr 

    
0.0699**  
(0.0337) 

2.9089*  
(1.2992) 

0.1042**  
(0.0364) 

0.0878***  
(0.0283) 

0.0205**  
(0.0088) 

1.8880**  
(0.5982)     

0.0147** 
(0.0069) 

0.0106*** 
(0.0028) 

employment 

        

-1.348e-
07* 

(0.5646e-
07) 

-5.06e-
09**  

(1.91e-
09)   

-1.078e-
07*  

(0.4636e-
06) 

-1.359e-
08***   

(4.829e-
09) 

-1.357e-
08*** 

(2.994e-
09)   

5.854e-
09*** 

(1.769e-
09) 

electricity_price 

  

-
1.4292***  
(0.4908)   

-10.597**  
(3.8052) 

0.1359 
(0.1802)   

-
0.0947***  
(0.0280)       

0.0275* 
(0.0161)   

gas_price 

        
1.7208* 

(0.7573)       
-0.2110* 
(0.1096) 

  -
0.1221*** 
(0.0405)     

environmental_tax -9.249e-
05**  

(3.558e-
05)   

-1.352e-
05*  

(0.6351e-
05)   

-5.294E-
09   

-7.944e-
06**  

(2.787e-
06)     

 -5.192e-
05*** 

(1.168e-
05) 

-1.259e-
05* 

(7.393e-
06)   

heating_days 

        

-4.179e-
05** 

(1.56e-
05)         

2.838e-
06*** 

(9.754e-
07)     

cooling_days -0.0002*  
(0.00009

07)                       

gva -3.114e-
06**  

(1.334e-
06) 

-2.974e-
05***  

(7.612e-
06) 

-3.066e-
07***  

(9.075e-
08) 

-1.698e-
05***  

(4.213e-
06) 

-1.95e-
06*  

(0.9706e-
06) 

-3.139e-
07***  

(9.388e-
08) 

-1.818e-
07***  

(5.642e-
08) 

-4.441e-
06** 

(1.252e-
06) 

3.438e-
07**  

(1.363e-
07)   

-3.312e-
07*** 

(9.812e-
08) 

-3.304e-
07*** 

(7.946e-
08) 

emissions 1.827e-
05**  

(6.762e-
06) 

6.054e-
05*  

(2.585e-
05)     

2.633e-
05***  

(7.793e-
06) 

6.156e-
06**  

(2.168e-
06) 

5.193e-
06**  

(1.777e-
06) 

7.367e-
06**  

(2.305e-
06) 

1.982e-
05*** 

(5.779e-
06) 

 2.68e-
05*** 

(5.343e-
06) 

8.287e-
06** 

(3.335e-
06) 

7.137e-
06*** 

(1.705e-
06) 

Observations 1343 1312 1368 1347 1335 1344 1330 1330 1336 1337 1281 1337 
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GMM model with deltas – Delta energy intensity as the dependent variable 

Variable/Sector A B C D E F G H I L O P 

const 

    

-
0.0068*** 
(0.0017) 

-0.0917** 
(0.0371)     

-0.0005** 
(0.0002)           

delta_brwn_shr 

  
0.4597*  

(0.2675)   
6.9389***  
(1.3771) 

0.2170*** 
(0.0735) 

0.1009*** 
(0.0343)           

0.0279**  
(0.0103) 

tfp -
0.2292***  
(0.0394) 

-
0.2082*** 
(0.0519) 

-0.0356*  
(0.0197) 

-0.8233*  
(0.4513) 

-0.0487*  
(0.0262) 

-
0.0401*** 
(0.0091) 

-0.0181**  
(0.0072) 

-0.3890**  
(0.1737) 

-0.0203**  
(0.0067) 

-
0.0088***  
(0.0028) 

-
0.0233*** 
(0.0064) 

-
0.0181*** 
(0.0044) 

delta_employment 

    

-7.971e-
08***  

(2.867e-
08)   

-4.739e-
07*  

(2.637e-
07)     

-6.313e-
07**  

(2.553e-
07) 

-4.67e-
08***  

(1.739e-
08) 

-3.611e-
08*  

(1.892e-
08)   

-2.893e-
08**  

(1.409e-
08) 

delta_electricity_pri
ce 

      
-8.5962*  
(5.0732)             

-
0.1481***  
(0.0491)   

delta_gas_price 

  
-4.0306** 
(1.8309)     

-0.8109** 
(0.3657)               

delta_environment
al_tax 

  

-
0.0026***  
(0.0008) 

-2.122e-
05**  

(8.471e-
06)   

-
0.0002***  
(8.329e-

05) 

-4.579e-
05*  

(2.62e-
05) 

-1.416e-
05***  

(4.972e-
06)       

-3.034e-
05*  

(1.72e-
05)   

delta_heating_days 

  

0.0001**  
(6.145e-

05) 

-5.161e-
05***  

(1.932e-
05) 

0.0008**  
(0.0003)                 

delta_cooling_days 

                        

delta_emissions 6.542e-
05* 

(3.662e-
05) 

0.0003***  
(2.459e-

05) 

8.583e-
06*** 

(2.276e-
06) 

3.287e-
05*** 

(1.193e-
05) 

0.0002*** 
(3.078e-

05) 

2.764e-
05*** 

(7.133e-
06) 

1.501e-
05*** 

(1.748e-
06) 

2.698e-
05*** 

(8.894e-
06) 

8.48e-
05**  

(3.446e-
05) 

5.072e-
05*** 

(4.338e-
06) 

3.905e-
05*** 

(6.15e-
06) 

2.562e-
05*** 

(6.564e-
06) 

Observations 359 349 357 349 357 359 354 354 357 357 342 357 

Note: Lagged dependent variable is treated as endogenous, and all other variables as exogenous. All regressions 

include year fixed effects. Coefficients are presented and standard error in brackets. The following are p-values 

which indicate the significance level of coefficients: *p < 0.10, **p < 0.05, ***p < 0.01. 

To enhance energy efficiency and reduce energy intensity, several policy recommendations 
are crucial. First, implement stringent emission reduction policies in high-energy-intensity 
sectors such as Mining and Quarrying and Transportation, including stricter emissions 
standards and support for cleaner technologies. Next, promote a transition to renewable 
energy sources in sectors reliant on brown energy, like Manufacturing and Water Supply, 
through subsidies for renewable energy projects and investments in clean energy 
infrastructure. Adjusting electricity prices to better reflect the true cost of energy can drive 
efficiency improvements in sensitive sectors like Electricity, Gas, Steam, and Air Conditioning 
Supply. Develop sector-specific strategies that address the unique drivers of energy intensity 
in each sector, such as focusing on emission controls in Transportation and cleaner energy in 
Manufacturing. Prioritize technological advancements by supporting innovation and efficiency 
improvements, as total factor productivity improvements are linked to reduced energy 
intensity. Finally, expand and optimize environmental tax schemes to further encourage 
energy efficiency where these taxes have demonstrated significant impacts. 

 

Extensions and Robustness Tests 
 

The analysis demonstrates a robust framework for understanding changes in energy intensity 
across sectors. The financial analysis shows overall strong robustness and performance. 
While some sectors exhibit heteroskedasticity, which has been partially addressed through 
model adjustments, the Breusch-Pagan test confirms these measures. Multicollinearity is 
observed but remains manageable; however, addressing it through techniques like variable 
selection or combination could improve model clarity and precision. These issues might affect 
the interpretation of coefficients and the stability of predictions, but they do not significantly 
undermine the model's overall effectiveness. The analysis still provides valuable insights and 
reliable results, though attention to these areas could further enhance its accuracy and 
reliability. 

The delta model analysis provides a robust framework for understanding changes in energy 
intensity across sectors. Although heteroskedasticity is present in several sectors, the use of 
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robust standard errors addresses this issue. Additionally, multicollinearity is less of a concern 
when using deltas, enhancing the clarity of the results. Overall, the findings support sector-
specific strategies that focus on productivity improvements, emission management, and 
cleaner energy transitions. 

 

Conclusion 
 

This study explores the determinants of carbon intensity (CO2 emissions) across 21 economic 
sectors and 27 EU member states from 2014 to 2022, using data from Eurostat. It highlights 
significant sectoral variations in energy intensity, CO2 emissions, economic contribution, and 
reliance on brown energy. The Electricity, Gas, Steam, and Air Conditioning Supply sector 
(Sector D) stands out with the highest energy intensity and CO2 emissions, though both 
metrics have decreased over the study period. The Manufacturing sector (Sector C) remains 
a major economic contributor but also heavily relies on non-renewable energy. 

The analysis demonstrates that emissions, brown energy usage, and gross value added 
(GVA) are key drivers of energy intensity across sectors. Sectors with high energy intensity, 
such as Mining and Quarrying (Sector B) and Transportation and Storage (Sector H), need 
targeted emission reduction strategies and a transition to cleaner energy sources. The role of 
environmental taxes and energy prices is significant, with environmental taxes generally 
promoting lower energy intensity and higher energy prices potentially driving efficiency 
improvements, though effects vary by sector. 

Methodologically, the IV-GMM model used in this study effectively addresses endogeneity 
concerns and reflects the persistence of energy intensity over time. The findings suggest that 
policies should focus on stringent emission reductions, support for renewable energy, and 
technological advancements to improve energy efficiency. Sector-specific strategies and 
optimized environmental tax schemes are essential for achieving substantial progress in 
reducing carbon intensity and transitioning to a low-carbon economy. 
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Appendix 1: Description of economic sectors in NACE classification 

NACE CODE DESCRIPTION 

A Agriculture, forestry and fishing 

B Mining and quarrying 

C Manufacturing 

D Electricity, gas, steam and air conditioning supply 

E Water supply; sewerage, waste management and remediation activities 

F Construction 

G Wholesale and retail trade; repair of motor vehicles and motorcycles 

H Transportation and storage 

I Accommodation and food service activities 

J Information and communication 

K Financial and insurance activities 

L Real estate activities 

M Professional, scientific and technical activities 

N Administrative and support service activities 

O Public administration and defence; compulsory social security 

P Education 

Q Human health and social work activities 

R Arts, entertainment and recreation 

S Other service activities 

T Activities of households as employers; undifferentiated goods- and services-producing activities of 
households for own use 

U Activities of extraterritorial organisations and bodies 
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